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ABSTRACT
Poor adherence to medication is a serious problem in the United States, leading to complications and pre-
ventable hospitalizations, particularly for patients with chronic diseases. Interventions have been proposed
as a means to improve adherence to medication, but the optimal time to perform an intervention has not
been well studied. We provide a use case for how claims data linked with electronic health records (EHRs)
can be used tomonitor patient adherence tomedication andprovide a source of information to help decide
when to perform an intervention. We propose a Markov decision process (MDP) model to determine when
to perform adherence-improving interventions based on a patient’s EHR. We consider the the societal per-
spective where we trade off maximization of time to first adverse health event and minimization of cost
of interventions, medication, and adverse events. We use our model to evaluate the costs and benefits of
implementing an EHR-based active surveillance system for adherence-improving interventions in the con-
text of cardiovascular disease management for patients with type 2 diabetes. We also provide some the-
oretical insights into the structure of the optimal intervention policy and the influence of health risks and
costs on intervention decisions.

1. Introduction

Poor medication adherence has been estimated to cost approx-
imately $100 billion per year in preventable hospitalizations in
the United States alone (Osterberg and Blaschke, 2005). Studies
show that while improving adherence results in an increase
in medication costs, there are significant overall cost savings,
particularly among patients with chronic diseases (Sokol et al.,
2005; Ho et al., 2006). Improved adherence can also reduce
the risk of adverse events and improve the quality and length
of life for many patients. In particular, improving adherence
to glucose medications among patients with diabetes in the
United States could save $4.68 billion annually in avoided
hospitalizations and emergency department visits (Jha et al.,
2012). In spite of the benefits of high adherence, poor adherence
is recognized as a major challenge in the medical community
(Cutler and Everett, 2010; Bosworth et al., 2011). In 2007, the
National Institutes of Health (NIH) implemented theAdherence
Research Network to promote research on adherence (National
Institutes of Health, 2011). The initiative supports 14 institutes
and centers across NIH, highlights NIH funding for adherence
research, synthesizes current scientific findings on adherence,
and provides leadership on future research directions.

While it is difficult to directly measure the medication taken
by patients, there are widely accepted proxy measures of adher-
ence, including patient self-reporting, electronic medication
monitors on pill canisters, and rates of prescription refills cal-
culated from claims data. Based on prescription refill estimates
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of adherence, studies suggest that only 25% of patients remain
highly adherent to common treatments such as cholesterol-
lowering medication (Benner et al., 2002; Mason et al., 2012).
Adherence-improving interventions, such as collaborative deci-
sion making and the use of decision aids to choose medica-
tions, have been shown to improve adherence (Weymiller et al.,
2007). However, barriers to such interventions include that they
are often not reimbursed by third-party payers and the per-
ception that they take time and effort. Furthermore, informa-
tion about an individual patient’s adherence to their prescribed
medications is normally unavailable to physicians at the time of
encounter with a patient.

Recently, considerable attention has been given to the use
of electronic health records (EHRs) to improve efficiency and
effectiveness of health care delivery. EHRs are systematic col-
lections of patient health information that can aid physicians
in making medical decisions. In the United States, the Cen-
ters for Medicare and Medicaid Services (CMS) have intro-
duced the Meaningful Use initiative (US HHS Department,
2011). The goals of the initiative are to improve safety and effi-
ciency of health care delivery through the use of EHRs. Due
to incentives created by this program, health care managers are
under pressure tomeet the objectives of theMeaningful Use ini-
tiative and to submit clinical quality measures (CQMs) using
certified EHR technology. In addition, in 2012, CMS added
new adherence quality measures for oral diabetes medications,
some blood pressure medications, and cholesterol medications
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(statins) based on the percentage of patients who refill at least
80% of their prescriptions over the measurement period (CMS,
2012). In light of these quality measures, there is an increasing
need to use measures of adherence to guide the use of interven-
tions at the point of care (Steiner, 2012).

Displaying pharmacy claims data within EHRs could enable
monitoring of adherence and identification of patients who
would benefit most from an adherence-improving interven-
tion; Dixon et al. (2013) present an informatics approach for
integrating medication adherence information into the EHR,
and Danford et al. (2013) show the feasibility of measuring
adherence to lipid management goals using EHRs. By using
claims data within the EHR to actively monitor an individual
patient’s adherence to medications using metrics including the
percentage of refills a patient has received, which we refer to
as active adherence surveillance (AAS), health care providers
could make such decisions in real time at the point of care.
However, implementation of a surveillance system comes at a
cost. Therefore, in this article we aim to answer the following
research question: What are the potential cost and quality of
life benefits of using claims data within EHRs to identify the
optimal timing of interventions to improve adherence to med-
ication? To answer this question, we use pharmacy claims data
for a large population to estimate patient adherence levels to
the most commonly used medication for cholesterol control.
We present a Markov decision process (MDP) model to deter-
mine the optimal timing of adherence-improving interventions
based on AAS of an individual patient’s adherence. Our model
is presented from the societal perspective, a perspective in med-
ical decision–making applications that considers objectives of
multiple stakeholders, including patients and third-party pay-
ers. Specifically, we incorporate the patient perspective into our
model by prioritizing prevention of adverse health events related
to poor adherence.We also incorporateminimization of costs of
interventions, medication, hospitalizations, and follow-up care
for adverse events related to poor adherence; these costs would
be incurred in part by patients and in part by third-party payers
(health insurers). These two perspectives are combined into a
single weighted objective function by using a willingness-to-pay
weighting factor to transform patient quality-adjusted life years
(QALYs) to monetary rewards.We present structural properties
of our model, including conditions under which a control
limit policy exists, and how the control limit policy changes
based on a patient’s health status and the effectiveness of an
intervention.

There are many prescription medications for which poor
adherence is recognized as a challenge in preventing the onset or
progression of disease (e.g., blood pressure control medications,
asthmamedications). In this article, we provide a specific exam-
ple based on adherence to statins, themost common cholesterol-
lowering medication. We evaluate the costs and benefits associ-
ated with AAS by using our MDP model to determine the fol-
lowing: (a) medication and intervention costs and costs associ-
ated with the occurrence of strokes and coronary heart disease
(CHD) events (the most significant outcomes associated with
cholesterol control) or death; and (b) the expected time before
a stroke, a CHD event (such as a heart attack). To estimate the
marginal benefits of implementing the joint claims data/EHR-
based system, we compare AAS with a much simpler, and eas-
ier to implement, schedule of interventions at regularly spaced

intervals (e.g., yearly interventions), whichwe refer to as inactive
adherence surveillance (IAS). We also compare our results with
outcomes for patients who receive no interventions. In addition,
we estimate the potential yearly benefits of applying AAS to the
US population.

Our findings have the potential to influence several differ-
ent stakeholders. First, our findings could help inform CMS
about the potential benefits of AAS, and whether such imple-
mentations should be added to the list of objectives for their
Meaningful Use or other future initiatives. Understanding and
improving medication adherence is a natural extension to the
current Meaningful Use requirement of medical reconciliation,
which requires an accurate list of medications the patient is cur-
rently taking. In addition, the goal of ourwork aligns withCMS’s
goal of “healthier people” by addressing an underlying cause of a
lack of prevention of adverse health events (CMS, 2016). Second,
our results could help inform third-party health insurers about
the potential benefits of reimbursing health care providers for
adherence-improving interventions. Minimization of the costs
in our model would be strongly aligned with the goals of third-
party payers. Third, physicians may benefit from an improved
understanding of the relative benefits of addressing adherence
to medications for chronic conditions. Finally, patients could
directly benefit from improved quality of life and the lower costs
that can be achieved by improved adherence.

2. Background onmedication adherence

Motivation for understanding adherence to medication is
summed up in a quote by C. Everett Koop, M.D.: “Drugs don’t
work in patients who don’t take them” (Thomas, 2014). Oster-
berg and Blaschke (2005) cite patient forgetfulness and lack
of understanding as possible causes of poor adherence. The
authors describe several types of interventions for improving
medical adherence, including patient education, increased
access to medical care, and improved communication between
patients and physicians. For example, interventions such as
performing screening tests and reviewing a patient’s risk
of an adverse health event (e.g., 10-year risk of a stroke or
CHD event), or educating a patient about the risk reduction
associated with a particular medication, have been shown to
improve patient adherence (Weymiller et al., 2007). Behav-
ioral interventions involving monitoring of adherence and
tailored recommendations from health care providers on how
to improve adherence have also been shown to improve clinical
outcomes for patients with chronic conditions (Kripalani et al.,
2007). However, these interventions can be associated with high
costs. Lower cost interventions using electronic reminders (e.g.,
text messages, e-mails) to improve adherence to medication
can provide benefits to patient adherence in the short term, but
in a review of interventions using electronic reminders, two of
the three studies of with a follow-up greater than six months
showed no effect of the interventions (Vervloet et al., 2012).
Thus, in this article we do not consider interventions comprised
exclusively of electronic reminders.

A common method for measuring patient adherence is to
observe the percentage of days covered (PDC) by prescription
refills over time. Prescription refills can be observed from phar-
macy claims data, a portion of administrative claims data gen-
erated as a result of a patient’s encounter with the health system.
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Figure . Diagram of prescription refills used to calculate the percentage of days covered (PDC).

Claims data is an important part of the extended EHR that is
collected by third-party payers for payment purposes. If Mean-
ingful Use program objectives are met, then more than 80% of
patients will have pharmacy refills recorded as structured data.

The standard formula for PDC is as follows (Caetano et al.,
2006):

PDC = 100

×
(
days with an available supply of medication in the time period

days in time period

)
%.

Figure 1 provides an example of a patient’s pharmacy claims for
which PDC is estimated over a one-year period. In this example,
the patient begins taking the medication with a 30-day supply.
The patient makes four refills, each with 90-day supply, during
the year. Gaps between the end of the days’ supply for one pre-
scription fill and the beginning of the next fill are interpreted as
gaps in the patient’s adherence to the medication. As shown in
Fig. 1, refills that have supply exceeding the amount of time to
the end of the year (time period) are carried over to the calcula-
tion of the PDC for the next time period. Note that this method
for computing PDC is not restricted by the days’ supply of refills
or the refill method (by mail or local pharmacy).

Combining pharmacy claims data with laboratory data (e.g.,
cholesterol, blood sugar, blood pressure) and other sources
of data in the EHR is often necessary to measure the effects
of adherence. For example, the PDC can be linked with the
patient’s percentage change in metabolic values over the same
time period. We illustrate this with a specific example. Con-
sider the case of patients initiating statins to lower their choles-
terol and therefore lower their risk of stroke and CHD events.
States for the PDC over the course of a year after initiation
are defined by the four categories given in Table 1. The adher-
ence states are defined as follows: NON (0% ≤ PDC ≤ 10%);
LOW (10% < PDC ≤ 40%); MED (40% < PDC ≤ 80%); and
HIGH (80% < PDC ≤ 100%). These specific choices of adher-
ence states are based on those commonly used in the health
services research literature (for example, see Rasmussen et al.
(2007)). The threshold for high adherence is consistent with the

Table . Adherence states defined by percentage of days covered (PDC) and the
corresponding percentage change in total cholesterol (TC) for patients who initiate
statins (Mason et al., ).

Adherence State PDC Change in TC

NON % – % − .%
LOW % – % − .%
MED % – % − .%
HIGH % – % − .%

adherence requirement from the National Committee for Qual-
ity Assurance (NCQA)Healthcare Effectiveness Data and Infor-
mation Set (HEDIS) measure for patients with cardiovascular
disease being treated with statin medication (National Commit-
tee for Quality Assurance, 2015). By using laboratory data, we
link these adherence stateswith changes in total cholesterol (TC)
from initiation to one year after initiation. Large data sets that
combine pharmacy claims data with laboratory data for a large
sample of patients can thus be used to estimate the expected
change in TC for each PDC level.

The results in Table 1 are based on a study reported byMason
et al. (2012). Table 1 establishes the link between a patient’s per-
centage change in TC and the patient’s adherence tomedication.
Since the patient’s risk of cardiovascular events is affected by TC,
that risk is also correlated with the patient’s adherence to med-
ication (Kothari et al., 2002; Stevens et al., 2001). For this rea-
son, interventions that improve adherence have the potential to
reduce cardiovascular risk over time. A method to estimate a
stochastic model for changes in PDC and its effect on cardio-
vascular risk over time is elaborated in Section 6.

3. Literature review

The objective of this literature review is to highlight related
Markov models used for medical decision making and outline
the contributions of this article to the literature. The problem of
finding the optimal time to performan intervention to improve a
patient’s adherence to a medical treatment is analogous to prob-
lems studied in the machine maintenance literature. Pioneer-
ing work on maintenance systems was done by Klein (1962),
who considers a stochastically deteriorating system that can
be replaced or kept after inspection by a manager. This litera-
ture has been discussed previously (see section 5.3.1 of Mason
(2012)).

3.1. Markovmodels formedical decisionmaking

The prevalence of type 2 diabetes has stimulated modeling
efforts for this chronic disease for many years. The CDC
Disease Cost-Effectiveness group present a Markov model
for the progression of type 2 diabetes over time and the cost
incurred through treatment in order to evaluate the cost effec-
tiveness of certain treatment programs (The CDC Diabetes
Cost-Effectiveness Group, 2002). The intensive interventions
targeted blood glucose, blood pressure, and cholesterol. Earn-
shaw et al. (2002) extend this work by using outputs from the
CDC’s diabetes progression Markov model as inputs for their
linear programming model to determine an optimal mix of
treatment programs to maximize QALYs for a population given
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budget constraints and equity considerations. The resource
allocation model shows that additional QALYs can be gained
without increasing cost by using intensive therapy over reg-
ular therapy. Results also show that an increased budget can
increase benefits to newly diagnosed diabetes patients but with
diminishing marginal returns.

MDPs have been used in a number of medical applications
for determining when a particular treatment should start or a
specific procedure should take place. For example, Alagoz et al.
(2004) consider the optimal timing of liver transplantation using
a live donor in order to maximize the patient’s total reward.
The authors use an infinite-horizon MDP model to determine
the optimal timing of this one-time decision. Structural proper-
ties are derived, including the existence of a control-limit policy
under certain assumptions. Shechter et al. (2008) also present an
infinite-horizon MDP model to determine the optimal timing
of HIV therapy. The states in the model represent the patient’s
CD4 count, and the objective is to maximize life years (LYs) or
QALYs over the patient’s lifetime. Results suggest earlier treat-
ment is optimal, contrary to treatment trends at the time of
publication.

Maillart et al. (2008) present a partially observable Markov
chain model to evaluate various breast cancer screening poli-
cies considering implications of patient adherence to screening
guidelines and differences in breast cancer incidence and aggres-
sion as women age. Evaluation, rather than optimization of poli-
cies, is used to selectively compare easy-to-implement policies.
Efficient policies are identified based on the trade-off between
lifetime breast mortality risk and the expected number of mam-
mograms over a woman’s lifetime. Chhatwal et al. (2010) present
a finite-horizon discrete-time MDP to determine the optimal
timing of breast biopsy given the outcome of a mammogram
and the patient’s demographic features. The decision epochs are
years after age 40, the states represent the patient’s risk score
determined after a mammogram, and the actions are to have a
biopsy or to have anothermammogram the following year. Once
the action of biopsy is taken, the patient leaves the decision pro-
cess. Rewards are defined byQALYs accrued by patients. Chhat-
wal et al. prove structural properties for their model, including
the existence of a control-limit type policy. Results suggest that
the decision to biopsy should depend on the patient’s age.

Denton et al. (2009) propose an MDP model to find the
optimal time to initiate statins in patients with type 2 diabetes
for the prevention of cardiovascular events. The states represent
the patient’s metabolic risk factors. The rewards are monetary
rewards for QALYs minus costs of medication and treatment
for cardiovascular events, and the action to initiate or defer
initiation of treatment is revisited each year. The authors con-
sider the effects of using different cardiovascular risk models
to estimate the probability of adverse events, concluding that
the risk model chosen can dramatically affect the optimal
start times. Their model assumes perfect adherence to treat-
ment. Mason et al. (2012) propose a related MDP model to
find the optimal time to initiate statins given the possibility of
imperfect adherence. The authors incorporate a Markov model
for adherence after the patient begins statins. The authors con-
clude that timing of initiation does not have as great an effect
on patient outcomes as improving adherence; however, they

note that adherence-improving interventions can be costly. This
study provides motivation for the study of the optimal time of
adherence-improving interventions once treatment has begun.

3.2. Contributions of this article to the literature

To our knowledge, the problem of finding the optimal time to
perform an intervention to improve medication adherence has
not been studied before. This problem is analogous to prob-
lems studied in the machine maintenance literature; however,
there are two main differences: we consider a system that is
deteriorating in a nonstationary fashion over a finite horizon,
and in our model there is no available action to replace the
system; only preventative maintenance may be performed. Our
model also differs in several ways from the literature on MDP
models for medical decision making described earlier: the
decision to initiate an adherence-improving intervention is a
recurring decision and not a one-time decision as considered by
Alagoz et al. (2004), Shechter et al. (2008), Denton et al. (2009),
and Chhatwal et al. (2010); the use of net benefit as a reward
function; and our study is unique in its specific application and
the research question we answer.

We present new structural properties that provide insight
into optimal policies of an MDP in the context of recurring
interventions, and which could be generalized to other medical
decision–making problems. Proving the structural properties
was made more difficult given the use of net benefit as a reward
function, which combines costs and QALYs, rather than using
just one metric or the other as many medical decision–making
MDP models do. Our findings include a surprisingly simple
but counterintuitive result about how to prioritize interven-
tions among different types of interventions. We primarily
parameterized this MDP model for determining adherence-
improving interventions using transition probabilities and
medication effectiveness inputs from Mason et al. (2012).
While the MDP model solved by Mason et al. has a different
purpose—determining the optimal start time of statins consid-
ering adherence behavior—theMarkov-chain model describing
adherence behavior and the effects of adherence levels on
cholesterol levels from this previous work are relevant to the
model presented in this article. Additional details are provided
in Section 6 and in Appendix B to describe how these parame-
ters of the MDPmodel were estimated from a large data set that
combines pharmacy claims data with the relevant laboratory
data from an EHR.We present results based on the MDPmodel
for a specific example in the context of statin treatment for a
population of patients at high risk of stroke and CHD events.
To our knowledge, these results are the first estimates of the
potential benefits that may be derived from active surveillance
of patient adherence to medication using claims data and EHRs.

The technical development complements the case study and
highlights methods for establishing key properties of optimal
policies for MDPs with special structure when the standard
results of Puterman (1994) cannot be applied directly. Based on
a large-scale, real-world data set, the case study clearly illustrates
the potential benefits of AAS while also revealing the strengths
and limitations of the technical development and the potential
robustness of the results based on that development.
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Figure . Diagram of the Markov decision process (MDP) model.

4. Model formulation

In each of a set of discrete decision epochs, a patient on a partic-
ular medication is observed to be in a specific health state. The
health states are divided into adherence states, a pre-absorbing
state, and an absorbing state. The adherence states represent the
patient’s level of adherence to the medication (e.g., statins), the
transient pre-absorbing state represents the first occurrence of
adverse health events that the treatment aims to prevent (e.g.,
a stroke or CHD event) or death from other causes, and the
absorbing state indicates that an event or death has occurred
previously. At each decision epoch, the decision maker (e.g., the
physician) must decide whether or not to implement an inter-
vention with the patient. Thus, one of two possible actions is
taken: implement an intervention or defer the decision until the
next epoch. This decision is faced at each decision epoch, pro-
vided the patient does not enter the pre-absorbing or absorbing
states. Figure 2 provides an overview of the MDP model, and
the following subsections provide a detailed description of each
component.

4.1. Decision epochs

The decision to initiate an adherence-improving intervention
is revisited periodically over a finite horizon with T yearly
decision epochs. The decision epochs are indexed by t =
0, 1, 2, . . . ,T − 1, where decision epoch (time) t is associated
with the time interval [t, t + 1) in the sense that the effect of
any decision made at decision epoch t applies only during the
time interval [t, t + 1); for simplicity, we refer to this time inter-
val as period t . Time t = 0 represents the initial epoch when the
patient begins surveillance (the patient begins taking the medi-
cation), andT is chosen as a reasonable upper bound on a typical
patient’s age (e.g., 100 years).

4.2. States

The states of the patient are represented by the set S ≡
{0, 0′, 1, 2, . . . ,M}; for each time t = 0, . . . ,T , we let st ∈

S \ {0, 0′} denote the patient’s adherence level over the period
[t, t + 1), while the pre-absorbing state st = 0′ indicates that
the patient had an adverse health event (fatal or nonfatal), or
that the patient died from other causes at time t . The pre-
absorbing state is needed given the one-time cost assessed after
patients have had an adverse health event (the reward struc-
ture is described fully in Subsection 4.5). The absorbing state
st = 0 indicates that the patient had an adverse health event
or death from other causes before time t . For st ∈ S \ {0, 0′}, a
larger value of st corresponds to an increased (improved) level
of adherence for the patient over the period [t, t + 1).

4.3. Actions

An intervention may be initiated or deferred at any decision
epoch, t ∈ {1, . . . ,T − 1}, and in any state, st ∈ S \ {0, 0′}. The
possible set of actions is defined as the following:

At (st ) =
{ {W, I} for st ∈ S \ {0, 0′} and t = 1, . . . ,T − 1,

{W} for st ∈ {0, 0′} or t = T ,

so that at (st ) ∈ At (st ) denotes the action taken at time t when
the patient is in state st , where the action at = I denotes an inter-
vention and the action at = W denotes the action of waiting, or
deferring the decision until the next decision epoch. The total
action space is defined by A = {W, I}. Actions are dependent
on a patient’s adherence state over the period [t, t + 1), with the
effect of the intervention being reflected in the patient’s adher-
ence state st+1 at time t + 1.

4.4. Transition probabilitymatrix (TPM)

There are three types of one-step transitions: (1) transitions
between adherence states; (2) transitions from adherence states
to the pre-absorbing state; and (3) the (certain) transition from
the pre-absorbing state to the absorbing state. Given avoidance
of state 0′, the conditional transition probabilities between the
adherence states are represented by the matrix P̃t (at ) ∈ RM×M

so that [P̃t (at )]i, j, the (i, j) element of P̃t (at ), is equal to the
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conditional probability Pr{ st+1 = j | st = i, action at is taken
at time t , and st+1 �= 0′ } for 1 ≤ i, j ≤ M. Transitions from
adherence states to the pre-absorbing state are represented by
the vector p̄t ∈ RM so that [ p̄t ]i, the ith element of the M × 1
(column) vector p̄t , is equal to the conditional probability
Pr{ st+1 = 0′ | st = i } for 1 ≤ i ≤ M. Thus, this adverse health
eventwould occur at time t + 1, the beginning of decision epoch
t + 1, when patients enter the pre-absorbing state. Note that
the probability of entering the pre-absorbing state from each
adherence state does not depend on the action taken at time t ;
rather, if a patient has improved medication adherence from a
previous intervention, then the patient’s probability of entering
the pre-absorbing state is reduced due to that patient being in an
improved adherence state at time t . Improved adherence leads
to an improved cholesterol level, which reduces a patient’s prob-
ability of having an adverse health event. Notice also that by the
definition of the transient pre-absorbing state 0′, it is impossible
for a patient to make a one-step transition from an adherence
state to the absorbing state 0; therefore, all these one-step transi-
tion probabilities must be zero.Moreover, after entering the pre-
absorbing state, the patient spends one period in that state before
making a transition to the absorbing state with probability 1.
The complete one-step transition probability matrix (TPM) is

Pt (at ) =
⎡
⎣ 1 0 0ᵀM
1 0 0ᵀM
0M p̄t diag[1M − p̄t]P̃t (at )

⎤
⎦ , (1)

where 0M is the M × 1 (column) vector of zeros and 1M is the
M × 1 (column) vector of ones.

4.5. Rewards

There are many possible reward structures for our model,
depending on the decisionmaker’s perspective. In this article, we
define a flexible reward structure that is composed of four parts:
(1) a reward for quality-adjusted time gained in the most recent
period (e.g., a QALY for an annual decision epoch); (2) a cost
associatedwith an adherence intervention; (3) a state-dependent
cost of medication; and (4) a penalty cost for entering the pre-
absorbing state. We define rt (st , at ) to be the reward accrued at
time t in state st given action at is taken. For t = 1, . . . ,T − 1,
the reward function is defined as

rt (st , at )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
R×Q(st )−CMED(st ) for at =W and st =1, . . . ,M,
R × Q(st )−CMED(st )−CINT for at = I and st =1, . . . ,M,
−CF

t for st = 0′,
0 for st = 0, (2)

where R is the willingness-to-pay factor defining a monetary
value per QALY and Q(st ) represents the QALYs accumu-
lated for a patient in state st during time epoch t . The quan-
tity CMED(st ) denotes the cost of medication for period t ; this
cost depends on the patient’s adherence state, since costs are
not incurred for medication patients do not have in their pos-
session. The quantity CINT denotes the cost of an adherence-
improving intervention. The quantity CF

t represents a one-time
lump sum for the expected future costs of a patient entering

the pre-absorbing state 0′ at time t , dependent on the probabil-
ity of having a nonfatal or fatal stroke or CHD event or death
from other causes. This cost penalty reflects a loss associated
with failure to avoid an adverse health event. This loss could
include costs associated with hospitalization (for fatal and non-
fatal events) and/or future treatment. The quantity CF

t is esti-
mated in practice by multiplying the probability of each type of
absorbing event occurring and the expected future costs associ-
ated with that absorbing event. When a nonfatal event occurs,
the cost consists of the initial cost of an event plus expected
future costs of follow-up for that event. When patients die from
an event, the cost consists of only the hospitalization cost for
that event, while there is no cost for patients who die from other
causes.

The reward structure presented earlier represents a combi-
nation of the patient objective of maximizing quality-adjusted
time to the first adverse health event (which is frequently the
clinical intent of preventive treatment (Cleeman et al., 2001))
and the objective of minimizing costs of treatment, consid-
ering both costs before the patient enters the absorbing state
and expected costs after the patient enters the absorbing state.
Additional assumptions about the reward structure are provided
in Section 5, and specific values for rewards are provided in
Section 6 in the context of cardiovascular disease prevention.

For a patient in state st ∈ S in epoch t , the optimality equa-
tions can be written as

vt (st ) = max
at∈At (st )

{
rt (st , at ) + λ

∑
st+1∈S

pt (st+1|st , at )vt+1(st+1)

}
,

for every t = 1, . . . ,T − 1, (3)

where pt (st+1|st , at ) is the (st , st+1) element of Pt (at ), vt (st )
is the optimal value function, and λ ∈ (0, 1] is the discount fac-
tor used to calculate the value at time t of rewards received at
time t + 1. For a patient who has not entered the absorbing state
at time T , a reward is obtained that estimates the benefits and
costs associated with the patient’s future survival, based on an
estimate of the patient’s future remaining QALYs. The end-of-
horizon boundary condition is

vT (sT ) =
{
E[PDHR | sT ] for sT = 0′, 1, . . . ,M,
0 for sT = 0, (4)

where E[PDHR | sT ] represents the expected future difference
between the rewards for quality-adjusted survival benefits and
the associated costs, assuming no future interventions. Note that
E[PDHR | sT = 0′]=−CF

T < 0. In Section 6,we provide the par-
ticular finite horizon approximation of post–decision horizon
rewards used in the numerical experiments. The last decision
epoch, T , is selected to represent a reasonable upper bound on
the age at which adherence-improving interventions would no
longer be advisable due to high competing risks of death from
other causes. This end-of-horizon assumption has been made
in a number of other medical decision–making studies (Denton
et al., 2009; Chhatwal et al., 2010; Kurt et al., 2011).

5. Model properties and insights

This section provides insights into the structure of our model.
First, we discuss some of the assumptions of our model. Next,
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we present some properties of our model that can reduce the
computational effort to solve the MDP, and that provide some
insight into the optimal policy for interventions defined by our
model.Weprove the existence of an optimal control-limit policy.
In Appendix A, we present a property, Proposition 1 relating the
effectiveness of interventions to the optimal control limits for
the interventions and a property, Proposition 2, comparing the
optimal control limits for two patients where one patient is at
a greater risk for adverse health events than the other. Proofs
of the properties presented in this section and additional model
properties are provided in Appendix A.

5.1. Model assumptions

There are many possible choices for the reward function to use
in our MDP model. We chose to blend two criteria for our
reward function: (1) the patient’s reward for quality-adjusted
time to the first adverse health event; and (2) the cost of
treatment, intervention, and care associated with an adverse
health event, incurred in part by patients and in part by third-
party payers. We make the following assumptions about our
model:

A1: P̃t (at ) has the increasing failure rate (IFR) property for
every at ∈ A, and for every t = 1, . . . ,T − 1;

A2: E[PDHR|sT ] is nondecreasing in sT ∈ S \ {0};
A3: [ p̄t ]i ≡ Pr{st+1 = 0′|st = i ∈ S \ {0, 0′}} is nonincreas-

ing in st for t = 1, . . . ,T − 1; and
A4: rt (st , at ) is a nondecreasing function of st for t =

1, . . . ,T − 1, st ∈ S \ {0}, and at ∈ A.
AssumptionA1 states that the Markov chain defining a patient’s
adherence exhibits the IFR property (see Barlow and Proschan
(1965) for a definition of this property). This can be interpreted
to mean that the better a patient’s adherence level, the better
it is likely to be in the next period. Our study using observa-
tional data (see Section 6) suggests that this is a reasonable
assumption. This property has also been observed for a num-
ber of other health characteristics (Alagoz et al., 2004; Kurt
et al., 2011; Chhatwal et al., 2010). Assumption A2 states that
a patient’s expected post–decision horizon rewards for QALYs
minus costs, assuming no future interventions, do not decrease
as her adherence improves. This assumption is reasonable since
improved adherence causes treatment to be more effective at
preventing adverse events. Assumption A3 states that the prob-
ability of moving to the pre-absorbing state is nonincreasing
in the adherence state. Finally, assumption A4 states that the
difference between R × Q(st ), the reward for living through
period t, and CMED(st ), the cost of medication for period
t, is a nondecreasing function of the adherence state st for
st ∈ S \ {0, 0′}. This assumption is perhaps a limitation, given
that patients who have higher adherence to medication may
have nonincreasing quality of life (e.g., increased side-effects);
however, some medications for chronic conditions have been
shown to improve quality of life (e.g., antidepressants (Skeving-
ton and Wright, 2001)). We have provided an explanation in
Appendix A of the conditions under which assumption A4 will
hold. In addition to the previous assumptions, we assume that
R,Q(st ),CINT,CF

t , CMED(st ), and E[PDHR|st ] are nonnegative
for every t ∈ {1, . . . ,T} and st ∈ S \ {0, 0′}.

5.2. Model properties

We now discuss some properties associated with the optimal
adherence intervention policy and draw comparisons between
different types of patients and interventions. We begin by pre-
senting two lemmas that are used to prove our main results.

Lemma 1. If P̃t (at ) is IFR and assumption A3 holds, then Pt (at )
is IFR for t = 1, . . . ,T − 1.

This lemma establishes an important connection, in the form
of the IFR property, between patient health states and the prob-
ability of health outcomes conditioned on those health states.
Lemma 1 is useful for other types of medical decision–making
problems for which the IFR property exists among ordered
health states.

Lemma 2. The value function vt (st ) is nondecreasing in st , for
t = 1, . . . ,T and st ∈ S \ {0}.
Lemma 2 shows that the patient’s expected future rewards do
not decrease as adherence to treatment improves. Lemma 2 is
used to prove Theorem1, which states that the optimal interven-
tion policy has a simple control-limit structure for the adherence
states st = 1, . . . ,M.

Theorem 1. If the effect of an intervention at time t is inde-
pendent of the patient’s current adherence state st ∈ S \ {0, 0′}
for t ∈ {1, . . . ,T − 1}, then there exists an optimal control limit
s∗t ∈ S \ {0, 0′}, for every t ∈ {1, . . . ,T − 1}, such that the opti-
mal action a∗

t (st ) is given by

a∗
t (st ) =

{
I, if st ≤ s∗t , and st ∈ S \ {0, 0′},
W, otherwise,

}

for t = 1, . . . ,T − 1. (5)

Theorem 1 provides sufficient conditions under which the
optimal intervention policy has a simple structure, which is
important for clinical applications in practice. For example, this
structure would be valuable for implementing findings through
a clinical decision support system for real-time interventions.
This theorem applies in the setting of a perfect intervention,
an intervention in which all patients transition to high adher-
ence. In contrast, an imperfect intervention is one in which not
all patients transition to high adherence after the intervention.
In the case study presented in Section 6, we present numerical
results for perfect and imperfect interventions that satisfy the
independence assumption, and we empirically show that this
optimal control limit structure exists.

6. Case study: Statin adherence for patients with type
2 diabetes

In this section, we present a case study to illustrate the appli-
cation of our model to evaluate a hypothetical EHR-based AAS
system in the context of preventive treatment for cardiovascu-
lar disease. Specifically, we investigate adherence interventions
for statin treatment among patients with type 2 diabetes. Statins
are particularly important for patients with diabetes, since these
patients are at two to four times’ higher risk for stroke and
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CHD events over patients without diabetes (CDC, 2011). Fur-
thermore, long-term adherence to statins is known to be poor
(Benner et al., 2002; Mason et al., 2012).

In Section 6.1, we provide our data sources andmodel param-
eters. Additional details regarding parameter estimation are pro-
vided in Appendix B. In Section 6.2, we compare active and
inactive surveillance policies using theMDPmodel described in
Section 4.We present the optimal policies and expected LYs and
costs associated with these policies. We also explore the effects
of gender, the patient’s health risk, the cost of an intervention,
the willingness-to-pay factor, and the type of intervention on
the optimal policy. We conclude this section with an estimate
of total benefits of AAS to the US diabetes population.

6.1. Data andmodel parameter estimation

The transition probabilities among adherence states were
computed from the administrative medical and pharmacy
claims data from a large health insurance company that insures
patients across the United States. A cohort of 54 036 diabetes
patients from this dataset were identified using HEDIS criteria
for diagnosis of diabetes (National Committee for Quality
Assurance, 2007). Patients included in the set were required to
have five years of continuous enrollment, with first encounter
dates ranging from January 1995 to June 2004. The PDC by
pharmacy fills, described in Section 2, was used as a proxy
for patient adherence rates. Once the PDC was computed
for each patient, the transition probabilities were computed
by counting the number of patients in each adherence state
who transitioned to each adherence state in the next year.
The associated effect of statins on the patient’s TC level for
each adherence level was derived from this observational data
set as well. See Mason et al. (2012) for a detailed descrip-
tion of the calculations for the initial probability vector for
entering adherence states after initiating statins, the one-step
transition probability matrix among adherence states, and the
adherence-dependent effect of statins on the patient’s TC level.
Note that the estimation of the one-step transition probabil-
ity matrix under the action wait implicitly assumes that the
patients included in the administrative pharmacy claims dataset
received no adherence-improving interventions during the data
collection period; however, we have no way to ensure that this
is the case. Thus, our estimate for this transition probability
matrix may be biased, potentially leading to overestimating the
number of patients in favorable adherence states (e.g., high–
and medium–level adherence) under the action of wait in our
model.

The transition probabilities for stroke and CHD events were
derived from the UKPDS risk models (Kothari et al., 2002;
Stevens et al., 2001), and the probabilities for death from other
causes were calculated from the CDCmortality tables (National
Center for Health Statistics, 2007). The state of the patient’s
health (other than their adherence level), which we used to
estimate stroke and CHD event probabilities with the UKPDS
model, was based on observations from a large cohort of 663
patients receiving treatment for type 2 diabetes at Mayo Clinic,
Rochester, MN. Approximately 15,000 measurements of HbA1c
(a patient’s average blood sugar over two to threemonths), blood

pressure, and cholesterol were collected between 1997 and 2006
through the Mayo Clinic Diabetes Electronic Management
System (DEMS) (Gorman et al., 2000). The evolution of blood
glucose and blood pressure was estimated based on empirical
estimates from the Mayo cohort for diabetes patients under
treatment for blood glucose and blood pressure. The evolution
of cholesterol states (TC and HDL) was estimated based on data
from untreated patients; for the simplicity of this model, the
majority of numerical experiments are based on deterministic
evolution of cholesterol. We also present sensitivity analysis
results using stochastic evolution of cholesterol; the methods
for estimating the transition probabilities among cholesterol
states has been described previously (Kurt et al., 2011). Given
that the evolution of cholesterol states was estimated based on
data from untreated patients, the percentage changes in TC
(shown in Table 1) are applied annually to the untreated TC
values according to the patients adherence state.

For all our experiments, we assumed a maximum age of T =
100 as the age at which interventions would be discontinued and
a discount factor of λ = 0.97, which corresponds to a 3% yearly
discount rate (Gold et al., 1996). Since we are only consider-
ing LYs in the case study, Q(st ) = 1 for all st ∈ S \ {0, 0′}. For
the base case, we assumed a willingness to pay of R = $100,000
(Evans et al., 2004) and a cost of statins of CMED(st ) = $212 ×
δ(st ), where δ(st ) represents themeanPDCof a patient in adher-
ence state st (RedBook, 2009). The cost of an intervention for the
base casewas estimated to beCINT = $90 (Chapman et al., 2010).
This intervention cost includes telephone counseling to improve
medication adherence and reinforcement of the message by a
pharmacist. The initial and follow-up costs of stroke and CHD
events were drawn from sources in the health services research
literature provided in Table 2. The one-time penalty of enter-
ing the absorbing state, CF

t , is computed with a Markov chain
using these costs and probabilities governing patient survival.
The event and death transition probabilities represented by the
vector p̄t were calculated by summing the probabilities of stroke,
CHD events, and death for each adherence state. The expected
post–decision horizon reward (i.e., expected rewards accrued
after age 100) is given by the following 20-year finite-horizon
approximation:

E[PDHR|sT ] =
[ 19∑

i=0

λi+1(i + 1)
(
1 − [ p̄T ]sT

)i]

× [R × Q(sT ) −CMED(sT )]([ p̄T ]sT ). (6)

The adherence states used in the numerical experiments
are NON (0% ≤ PDC ≤ 10%), LOW (10% < PDC ≤ 40%),
MED (40% < PDC ≤ 80%), andHIGH (80% < PDC ≤ 100%)
(Mason et al., 2012). The transition probability matrices, P̃t (at ),

Table . Initial hospitalization costs and follow-up events for adverse events.

Parameter Cost Citation

Initial Hospitalization for Stroke $, AHRQ ()
Initial Hospitalization for CHD $, AHRQ ()
Yearly Follow-up for Stroke $ Thom et al. ()
Yearly Follow-up for CHD $ Thom et al. ()
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were estimated to be

NON LOW MED HIGH

P̃t (W ) =
NON
LOW
MED
HIGH

⎛
⎜⎜⎝
0.787 0.106 0.082 0.025
0.498 0.205 0.213 0.084
0.199 0.154 0.390 0.257
0.028 0.046 0.189 0.737

⎞
⎟⎟⎠ ,

and

NON LOW MED HIGH

P̃t (I) =
NON
LOW
MED
HIGH

⎛
⎜⎜⎝
0.091 0.165 0.257 0.487
0.091 0.165 0.257 0.487
0.091 0.165 0.257 0.487
0.091 0.165 0.257 0.487

⎞
⎟⎟⎠ .

Note that P̃t (W )was estimated from adherence data for patients
on statins after removal of patients who discontinued treatment
due to intolerance (Mason et al., 2012). The matrix P̃t (I) was
estimated based on the proportion of patients occupying each
of the adherence states in their first year of treatment. This
assumption was made since an imperfect intervention may act
to “reset” a patient’s adherence level to the level it was when the
patient initially began treatment. In addition, we considered the
more optimistic case that a patient moves to state HIGH with
probability 1. Use of this intervention provides a conservative
estimate of the improvement achievable through interventions.
The use of real observational data to estimate the probabilities
among the adherence states inherently includes the effects of
diet, exercise, and other behavioral changes.

The majority of the assumptions made in order to prove the
structural properties also hold for our numerical experiments.
Assumptions A1, A2, and A3 all hold. Given that there are no
estimates in the literature of QALY decrements for statin medi-
cation adherence states, we only consider LYs in the case study.
Thus, Q(st ) = 1 for all st = 1, . . . ,M and for all t = 1, . . . ,
T − 1, and assumption A4 does not hold. Also, the assump-
tion made to prove Theorem 1 that the effect of an interven-
tion at time t is independent of the patient’s current adher-
ence state holds for both of the intervention transition prob-
ability matrices used in the numerical experiments. In what
follows, the TPM P(1)

t (at ) stochastically dominates the TPM
P(2)
t (at ), represented as P(1)

t (at ) � P(2)
t (at ), if for each row of

these TPMs, the associated complimentary cumulative distribu-
tion function of P(1)

t (at ) dominates that of P(2)
t (at ); see alsoDef-

inition 1 and Proposition 1 in Appendix A.3. For Proposition 1,
P(1)
t (I1) � P(2)

t (I2) is satisfied when interventions I1 and I2 are
the perfect and imperfect interventions, respectively, outlined
earlier; however, P(2)

t (I2) � P(2)
t (W ) is not satisfied. Also, the

inequality for the difference in value function values is satis-
fied for all t ∈ {1, . . . ,T − 1} except for the case of st = M − 1.
However, transition probability matrices for other interventions
may satisfy all assumptions for Proposition 1 of Considering
types A and B to represent men and women, respectively, all
conditions for the theorem are satisfied except for P̃(B)

t (I) �
P̃(B)
t (W ) and v (A)

t (st + 1) − v (A)
t (st ) ≤ v (B)

t (st + 1) − v (B)
t (st )

(other than when t is close to T ). However, other categories of
patients may satisfy the conditions of Proposition 1.

6.2. Numerical results

Numerical experiments were conducted to find the optimal pol-
icy for adherence-improving interventions based on the pre-
vious model parameters. The model was solved using back-
wards recursion, implemented in C/C++. Each experiment took
less than 10 s to run using a 2.83GHz PC with 8GB of RAM.
Experiments were run for males and females, starting at age 40,
assuming a variety of different risk states and different inter-
vention cost estimates. The perfect and imperfect interventions
described in Section 6.1 were both evaluated. We represent dif-
ferent risk states by the patient’s TC and high-density lipoprotein
(HDL), also known as “good” cholesterol, each given as one of
low (L),medium (M), high (H), and very high (V ). These are the
most significant metabolic factors influencing a patient’s risk of
stroke or CHD events according to the UKPDS model. While
there are a total of 16 patient risk states defined by clinically rel-
evant thresholds (Cleeman et al., 2001), for brevity we provide
policies and numerical results for representative patients with
low risk (lowTCand very highHDL),medium risk (mediumTC
andmediumHDL), and high risk (very high TC and lowHDL).

... Active vs. inactive surveillance
To estimate the potential benefits of using EHRs to improve
adherence to medication at the population level, we compared
the expected LYs from age 40 prior to an event or death and the
expected discounted total costs comprising the costs of inter-
vention, statin treatment, and hospitalizations and follow-up
care for CHD events and stroke found using the optimal AAS
policy and the IAS policy. IAS involves periodic interventions
that do not rely on a patient’s adherence level. We considered
interventions that occur every k years (k = 1, 2, 3, 4, or 5) after
a patient begins taking medication, regardless of the patient’s
adherence state. The IAS policy is useful for comparison since it
requires no pharmacy or laboratory data and is therefore much
easier to implement in practice. We also considered the use of
no interventions.

Figures 3 and 4 show the expected LYs vs. costs for AAS, IAS,
and no treatment, for females and males. Imperfect interven-
tions were used for these results. We evaluated different AAS
policies by varying the willingness-to-pay factor from R = $0

Figure . Comparison of expected LYs versus costs for medication, interventions,
and treatment of events for active adherence surveillance (AAS) policies (with vary-
ing R values) and inactive adherence surveillance (IAS) policies (when interventions
occur every k years) for female patients using imperfect interventions. Results are a
weighted average of LYs and costs for the  possible risk states.
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Figure . Comparison of expected LYs versus costs, as shown in Fig. , for male
patients.

to R = $1,000,000. When the willingness-to-pay factor is var-
ied, different weights are placed on LYs and costs. An R value of
$0 or close to $0 may align with the payer perspective of min-
imizing costs. As this factor increases, a larger weight is placed
on maximizing the patient’s LYs rather than minimizing costs.
We observe that AAS outperforms IAS, for females and males,
yielding greater expected LYs before an event or death and lower
expected costs when R ≥ $5,000. In fact, the exact threshold
value for R for which AAS provides greater LYs than IAS is
less than $5,000 for males. When R = $100,000, the base case
value for our experiments, the average female patient using AAS
receives an expected 0.17 additional LYs with a $960 reduction
in costs over IAS (k = 1), and the average male patient using
AAS receives an expected 0.19 additional LYswith a $913 reduc-
tion in costs over IAS (k = 1). AAS resulted in no interventions
for patients with HIGH adherence. The higher expected costs
incurred by IAS are presumably due, in part, to unnecessary
interventions for patients with HIGH adherence to treatment,
highlighting the benefit of AAS. It is particularly interesting that
there are major gender differences in the expected LYs before an
event or death. Based on our results, we observe that males are
expected to have an adverse event or death approximately five
years earlier than females.

While AAS dominates IAS for all 16 risk states, there are
significant differences in the magnitude of the differences in
expected cost and LYs for patients with different risk of CHD
events and stroke. Figure 5 presents results for females with low,
medium, and high risk in a format similar to Fig. 3. Patients with
low risk can expect to have their first event or death later in life
than patients with medium or high risk. Also, as a patient’s risk
increases, her benefit over no treatment and her benefit over
IAS increase. Thus, it appears the benefit of AAS is increasing
in patient risk. We also note that the expected costs and LYs
are less sensitive to changes in the willingness-to-pay factor as
risk increases. The observations for males are consistent with
the results for females.

... Sensitivity to the effectiveness of an intervention
We performed sensitivity analysis on the type of intervention.
When a perfect intervention is considered, AAS (for R =
$100,000) and IAS (for k = 1) achieve nearly the same expected
LYs before an adverse health event or death, with AAS providing
0.00037 fewer LYs for females and the same expected LYs for

Figure . Comparison of expected LYs versus costs for medication, interventions,
and treatment of events for active adherence surveillance (AAS) policies (with vary-
ing R values) and yearly inactive adherence surveillance (IAS) for female patients
using imperfect interventions. Results are compared for low-, medium-, and high-
risk patients.

males. AAS results in an average reduction in costs of $23 for
females and no reduction for males. Thus, we conclude that if
perfect interventions were achievable, the incremental benefit
of AAS compared with IAS would be small.

Next, we explored the use of an imperfect transition proba-
bility matrix that is independent of the patient’s current adher-
ence state and does not result in high-adherence patients having
a lower rate of remaining in high adherence after an intervention
than after no intervention. This imperfect transition probability
matrix is as follows:

NON LOW MED HIGH

P̃t (IH) =
NON
LOW
MED
HIGH

⎛
⎜⎜⎝

0.02 0.04 0.18 0.76
0.02 0.04 0.18 0.76
0.02 0.04 0.18 0.76
0.02 0.04 0.18 0.76

⎞
⎟⎟⎠.

Under this intervention transition probability matrix, the opti-
mal actions (R = $100,000) result in reduced costs ($899 for
males, and $1164 for females) and small reductions in LYs
(0.0112 for males, and 0.0128 for females). These results show
that, in some situations (though not all), it is optimal for patients
with high adherence to have interventions. For males with the
worst underlying health, interventions for patients with high
adherence should start at age 51; however, for males with the
best underlying health, it is never optimal to have interventions
when the patient has high adherence. For females with the worst
underlying health, interventions for patients with high adher-
ence should start at age 61; again, we find that it is not optimal
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Table . Optimal ages to begin having interventionswithin a particular adherence state for female patients using active surveillance. Imperfect (probabilistic) interventions
are assumed. Note: “–”denotes it is never optimal for the patient to have interventions.

Low Risk Medium Risk High Risk

$ $ $ $ $ $ $ $ $

NON    NON    NON   
LOW    LOW    LOW   
MED    MED    MED   
HIGH — — — HIGH — — — HIGH — — —

for healthier patients to have interventions when the patient has
high adherence.

We also explored the use of alternative imperfect inter-
ventions in which the effect of an intervention is dependent
on a patient’s current adherence state. We created an upper-
triangular transition probability matrix from P̃t (I), thereby
ensuring that patients would have the same or better adherence
after the intervention. For each adherence level (for each row),
the probabilities of entering lower adherence states were set
to 0. We then ensured that each row of the transition probabil-
ity matrix summed to 1 by normalizing the remaining entries.
The upper-triangular imperfect transition probability matrix is
as follows:

NON LOW MED HIGH

P̃t (IUT) =
NON
LOW
MED
HIGH

⎛
⎜⎜⎝
0.091 0.165 0.257 0.487
0 0.182 0.283 0.536
0 0 0.345 0.655
0 0 0 1

⎞
⎟⎟⎠.

The results found using this transition probability matrix show
that, for males, there is no benefit from AAS (for R = $100,000)
over IAS (for k = 1). For females, AAS differed from IAS only
in the case of the healthiest patients (low TC, very high HDL) in
which interventions were not optimal for ages 41 and 42.

When we alter this intervention transition probability
matrix by varying the percentage of HIGH adherence patients
who remain in HIGH adherence—versus moving to MED
adherence—from 100% to 80%, we (unsurprisingly) observe
that as the rate of remaining in HIGH adherence decreases,
the starting age for interventions for HIGH adherence patients
increases. The latest starting age for interventions for HIGH
adherence female patients is age 58, resulting in an average
of 0.002 fewer LYs and $133 less cost per patient than yearly
IAS. For males, interventions start as late as age 45, resulting
in 0.00006 fewer LYs and $4 less on average per patient com-
pared to IAS. It is important to note that while these altered
imperfect transition probability matrices do not satisfy the
condition in Theorem 1 that an intervention is independent
of a patient’s current adherence state, these experiments show
that the optimal policies are still control-limit policies. Overall,

we found that the further an intervention is from a perfect
intervention, the greater the value AAS provides in identifying
patients who do not need interventions, thereby saving money
and preventing patients with high adherence from undergoing
interventions that would provide little benefit.

... Sensitivity to cost of intervention
We performed sensitivity analysis on the cost of interventions
using cost estimates for interventions from the literature (Chap-
man et al., 2010). When interventions are free, we observe that
patients should have yearly interventions starting at age 41
(t = 1), the earliest possible age for interventions to occur in
our model, since there is no downside for free interventions.
ForCINT = $10, $90, or $142, we observe female patients within
a particular adherence state should have interventions starting
at the ages listed in Tables 3 (for imperfect, P̃t (I), interventions)
and 4 (for perfect interventions). The following scenario shows
how these results would be applied to a patient in practice for
low-risk female patients considering high cost ($142) inter-
ventions. A 41-year-old female patient in the LOW adherence
state would receive an intervention. Given that she remains in
the LOW adherence state at age 42, she would again receive an
intervention. At age 43, her adherence improves to MED, so she
would not receive an intervention; she would only be eligible
for interventions in the MED adherence state once she is age 45
or older. At any point in time, if this patient enters the HIGH
adherence state she will not have an intervention, since it is
never optimal for interventions in this adherence state.

The optimal policy for male patients follows a similar pat-
tern to the optimal policy for female patients, but male patients
should start having interventions up to 13 years earlier than
female patients, depending on the type and cost of interven-
tion and the adherence state being considered. The differences
between the policies for male and female patients are likely due
to the fact that males generally have an earlier onset of risk for
cardiovascular events than females.

The optimal policy, presented in Tables 3 and 4, exhibits a
control limit structure across adherence states for a given age, as
expected fromTheorem1. For example, when considering high-
cost ($142) interventions for low-risk female patients who are 41

Table . Optimal ages to begin having interventions within a particular adherence state for female patients using active surveillance. Perfect interventions are assumed.

Low Risk Medium Risk High Risk

$ $ $ $ $ $ $ $ $

NON    NON    NON   
LOW    LOW    LOW   
MED    MED    MED   
HIGH    HIGH    HIGH   
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Table . Yearly differences in costs (billions) and future LYs for newly diagnosed diabetes patients using yearly inactive adherence surveillance (IAS, k = 1) and active
adherence surveillance (AAS) relative to no adherence interventions.

Males Females Total Population

LYs Cost (billions) LYs Cost (billions) LYs Cost (billions)

IAS (k = 1) , $. , $. , $.
AAS , $. , $. , $.

years old, the optimal control limit s∗t is LOW.When considering
perfect interventions for these patients, the optimal control limit
changes to MED.We also observe that the control limit tends to
increase with respect to age.

... Sensitivity to individual patient risk factors
In general, female patients and patients with lower risk stop hav-
ing interventions earlier due to lower risk of stroke and CHD
events. The policies are very insensitive to changes in the cost
of interventions, particularly for males and patients in higher
risk states. We observe that the higher-cost interventions have
a shorter range for which it is optimal to perform the inter-
ventions; that is, the interventions start later in life. The female
patients have fewer interventions overall; this is likely due to the
fact that being male is a risk factor for stroke and CHD events,
the events statins help prevent.

When perfect interventions are considered, it is always
optimal for male and female patients to have interventions
when their adherence is less than HIGH. The use of perfect
interventions for patients with HIGH adherence depends on the
intervention cost and risk state. For imperfect interventions,
however, patients with HIGH adherence should never have an
intervention since the probability of remaining in the HIGH
adherence state under an intervention is lower than the prob-
ability of remaining in the HIGH adherence state without an
intervention.

We also tested themodel for sensitivity to themodeling of the
evolution of cholesterol states. This sensitivity analysis replaces
the deterministic evolution of cholesterol states with Markov
chains to describe the stochastic evolution of TC and HDL.
While the choice for the method of modeling cholesterol does
affect the LY values and costs under each IAS (k =1,2,3,4 or 5)
and AAS (R = $0, $25,000, $50,000, or ≥ $100,000) scenario—
under stochastic cholesterol state modeling LYs are from 0.406
to 0.420 higher and costs are from$688 to $739 lower than deter-
ministic cholesterol state modeling—the relative benefit of AAS
over IAS is almost identical under each cholesterol modeling
assumption. The benefit of AAS (R= $100,000) over IAS (k =1)
under stochastic cholesterol states is 0.161 LYs and−$954, com-
pared with 0.168 LYs and−$960 (for a difference of−0.007 LYs
and $6).

... Potential yearly benefits of AAS to the US
diabetes population

In order to estimate the benefits of AAS applied to all diabetes
patients in the United States, we first estimated the prevalence of
diabetes in the United States using population estimates, by age
and gender, based on the 2010 US Census (US Census Bureau,
2011), and the estimated diabetes prevalence by state and age

range reported by Danaei et al. (2009). Next, we estimated the
number of newly diagnosed diabetes patients for each gender,
for every state and the District of Columbia, and for each age,
starting at age 40. Patients were defined as newly diagnosed in
2010 if they were a diabetes patient at age 40 or an older patient
diagnosed later in life. Patients were identified as newly diag-
nosed past age 40 if the population of total patients diagnosed
at earlier ages was less than the diagnosed population at the
given age. This accounts for increases in population and diabetes
prevalence with respect to age.

Table 5 provides a yearly estimate of the differences in
expected LYs and costs over the remaining years of life for newly
diagnosed diabetes patients aged 40 or older with IAS (k = 1)
and AAS relative to no interventions. According to our model,
the implementation of IAS (k = 1), compared with no inter-
ventions, would increase LYs for the US population at a cost
of $4075/LY. In comparison, AAS would increase LYs over no
interventions for the US population at a cost of $1102/LY. Using
AAS in place of IAS (k = 1) would result in over 131,000 addi-
tional LYs among adults newly diagnosed with diabetes while
saving over $717 million per year.

7. Conclusions

The CMSMeaningful Use initiative has the potential to encour-
age improved efficiency and effectiveness of health care delivery
through the use of EHRs. Based on our results, we found that
using an adherence-improving model linking claims data with
EHRs has the potential to significantly delay the onset of adverse
events or death, and reduce expected costs of treatment, hos-
pitalization, and follow-up care associated with adverse events
such as stroke and CHD. From the population perspective, we
found that AAS is cost-effective comparedwith no interventions
at a cost of $1102 spent per LY added prior to CHD, stroke,
or death. This cost per LY added is very low with respect to
commonly used thresholds (Evans et al., 2004). In addition,
AAS results in significant cost savings over annual IAS (k = 1)
while providing more than 131,000 additional event-free LYs to
newly diagnosed diabetes patients each year at a savings of $717
million per year. These estimated annual benefits highlight the
potential benefits of AAS. Our study considers the use of AAS
for a subpopulation in the United States that is at a high risk
of stroke and CHD events; however, AAS could be used for the
broader US population and for patients on other medications,
yielding additional savings.

From the third-party payer perspective, our model results—
using a willingness-to-pay value of R = $0 or very close to
$0—could be used to inform a third-party payer’s coverage of
all or part of the cost of adherence-improving interventions.
From the individual patient perspective, males receive an
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average of 0.19 additional LYs per patient before an event or
death over annual IAS at a reduction in costs of $913, and
females receive 0.17 additional LYs per patient at a cost savings
of $960 over annual IAS. These increases in LYs over annual IAS
are an order ofmagnitude greater than the benefits seen through
some prevention programs that are part of standard practice
in the United States. For example, childhood vaccination
against measles, mumps, and rubella results in an increase of
0.017 LYs per person (Wright andWeinstein, 1998). In addition,
the increase in LYs from AAS over no interventions is even
greater. The benefits of AAS over IAS and no interventions
increase with increasing patient risk. In other words, patients at
higher risk of adverse events stand to have greater benefit from
AAS. In addition, we have found that the further an interven-
tion is from a perfect intervention, the greater the value AAS
provides in identifying patients who do not need interventions.

We found the optimal policy for adherence-improving inter-
ventions to exhibit a control-limit structure. This is consistent
with the theoretical results we presented. This simple structure
is intuitively appealing and could be exploited to achieve compu-
tational advantages in the context of large MDPs requiring fast
solutions. From our numerical experiments, it appears that the
control limit is increasing with respect to age. Once a patient
begins having interventions, it is generally optimal to continue
having yearly interventions until very late in life. Such a sim-
ple policy is encouraging for the application of AAS system in
the already complex clinical environment.

We proved several new structural properties, for finite hori-
zon nonstationary MDPs, related to the optimal control limit
when interventions of different effectiveness are considered,
and when patients of different levels of risk are considered.
Proposition 1, in particular, provides insight through a sim-
ple yet counterintuitive rule for prioritizing patient interven-
tions. While we presented Theorem 1 and Proposition 1 (pre-
sented in Appendix A) in the context of the problem to which
we are applying our model (the optimal timing of adherence-
improving interventions for patients with type 2 diabetes), these
theoretical properties and our model are generalizable to many
other contexts. For example, in the context of machine mainte-
nance, Proposition 1 could be useful in scheduling maintenance
for different types of machines that have different levels of relia-
bility.

Although the outcomes of the AAS policy dominated the
easier-to-implement IAS outcomes, our model did not account
for the possibility of initial set-up costs and ongoing mainte-
nance costs for such a system. While our model requires data
that are generally available in administrative claims systems and
laboratory information systems, the development of a decision
support system that collects and utilizes the data would have
some cost associated with instantiation of the system in a clini-
cal environment. Since these costs are likely to vary significantly
among implementations, we did not consider this in our anal-
ysis; however, it is worth noting that our model can easily be
modified to incorporate any maintenance costs that would be
necessary to use AAS. In addition, our model could be used to
estimate the payback time for the initial costs of the system
by calculating expected return on investment of using AAS
over IAS. Furthermore, CMS incentives for participation in
the Meaningful Use program may offset some of the costs of
implementation.

There are benefits and limitations associated with using
claims data. Administrative claims data sets can provide
information about many aspects of a patient’s interactions
with the health care system, including diagnoses, procedures,
medications, and providers. Claims data offer a cost-effective
tool for studying clinical care and outcomes for a large popu-
lation of patients. At the same time, important limitations do
exist including the following: only insured patients are repre-
sented in claims data, not all diagnoses appear in the patient
record (e.g., hypertension), and not all information about a
patient encounter is collected (e.g., no clinical measurements
such as blood pressure). One additional limitation related to
pharmacy claims may lead to overestimation of medication
adherence. Dates of filled prescriptions and pill counts are
included in pharmacy claims data, but the claims data are not
able to reflect how many pills the patient actually took from the
prescription.

There are also some practical challenges associated with the
use of claims and EHR data for applications such as we dis-
cuss. First, patients do not always stay with the same insurance
provider. Theremay be a limited amount of time for which there
is continuous information for each patient. This challenge may
eventually be overcome by the development of a universal EHR
that could be linked with claims data from multiple insurance
providers. Second, ourmodel assumes population-level data can
be used to estimate parameters for individual patients. In the
case of adherence to medical treatments, such as statin ther-
apy, this is reasonable because researchers have not been able
to identify ways to predict adherence on the basis of available
health data. Nevertheless, the use of population-level data rep-
resents a barrier to more accurate prediction of adherence that
might be possible with additional data. Third, in order for AAS
to be implemented at the point of care, EHRs will need to be
linked to pharmacy claims data to compute patient informa-
tion such as PDC for prescribed medications (to estimate the
patients adherence level), and patient health information from
the EHR (such as blood pressure and cholesterol) to estimate
the risk of adverse events. While we have demonstrated, in this
article, that it is possible to use claims and EHR data from two
different sources in a unified model, the ability to rapidly collect
and combine such data presents a challenge for health systems.
Models for combining claims and EHRdata, utilizing a common
data format, have been developed for the following: (1) drug
safety monitoring (beginning in 2008, the public-private Obser-
vationalMedical Outcomes Partnership, and beginning in 2009,
the US Food and Drug Administration–funded program Mini-
Sentinel); and (2) comparative effectiveness research (PCOR-
net, an innovative initiative of the Patient-Centered Outcomes
Research Institute) (Curtis et al., 2014; Rho et al., 2016). While
governance and technological challenges exist, combination of
claims data and EHR data is needed to generate a fuller picture
of a patient’s health status and move toward a learning health
system (Wallace et al., 2014; West et al., 2014; Haynes et al.,
2016).

In addition to the practical challenges highlighted earlier, we
acknowledge that there are additional steps needed to improve
medication adherence, including identification of effective
interventions. Our modeling efforts provide independent con-
firmation of the importance of identifying effective interven-
tions. As more information becomes available about the length
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of time an intervention affects a patient’s behavior, the model
could be altered to incorporate this effectiveness information.

Future research could build on our model in several ways.
For example, we considered interventions for a single medical
treatment; future studies could extend the current model to
include the optimal timing of interventions for patients on
multiple medications. This extension suggests a number of
interesting questions. Would there be interactions between
interventions? In other words, could an intervention for one
medication influence adherence to another medication? Could
an intervention be designed that would simultaneously improve
adherence to multiple medications? Furthermore, interesting
questions arise about the relative importance of interventions.
Our model could be extended to include more than one type of
intervention in the action space for the one-medication problem
to help prioritize among different types of interventions with
varying costs and levels of effectiveness. In addition, our model
could be amended to help prioritize interventions for different
medications. Additional variations on our model could include
different assumptions about the effectiveness of interventions.
Although there is no evidence at present, it is possible that inter-
ventions may provide diminishing improvement to adherence
over time or the adherence behavior of patients in the absence
of interventions may be nonstationary. As we pointed out in the
introduction, the recent substantial commitment of resources
and efforts by the medical community to improve the current
state of knowledge about medication adherence presents a
number research opportunities for the OR community. Our
model lays the foundation for some of these future studies.

Acknowledgments

We thank theDepartmental Editor, OguzhanAlagoz, as well as the associate
editor and the referees for their suggestions, which improved this article
substantially.

Funding

This material is based upon work supported in part by the National Sci-
ence Foundation through Grant Number CMMI 1462060. Any opinion,
findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the
National Science Foundation. This project was supported by grant num-
ber R36HS020878 from the Agency for Healthcare Research and Quality.
The content is solely the responsibility of the authors and does not neces-
sarily represent the official views of the Agency for Healthcare Research and
Quality.

ORCID

J. M. Lobo http://orcid.org/0000-0001-8375-2475
J. R. Wilson http://orcid.org/0000-0002-6255-4485

References

AHRQ. (2006) Nationwide Inpatient Sample. Healthcare Cost and Utiliza-
tion Project, Agendy for Healthcare Research and Quality, Rockville,
MD.

Alagoz, O., Maillart, L. M., Schaefer, A. J., and Roberts, M. S. (2004)
The optimal timing of living-donor liver transplantation. Manage Sci,
50(10), 1420–1430.

Barlow, R. E., and Proschan, F. (1965) Mathematical Theory of Reliability.
Wiley, New York.

Benner, J. S., Glynn, R. J., Mogun, H., Neumann, P. J., Weinstein, M. C.,
and Avorn, J. (2002) Long-term persistence in use of statin therapy in
elderly patients. JAMA, 288(4), 455–461.

Bosworth, H. B., Granger, B. B., Mendys, P., Brindis, R., Burkholder, R.,
Czajkowski, S. M., Daniel, J. G., Ekman, I., Ho, M., Johnson, M., Kim-
mel, S. E., Liu, L. Z., Musaus, J., Shrank, W. H., Buono, E. W., Weiss, K.,
and Granger, C. B. (2011) Medication adherence: A call for action. Am
Heart J, 162(2), 412–424.

Caetano, P. A., Lam, J. M. C., and Morgan, S. G. (2006) Toward a standard
definition and measurement of persistence with drug therapy: Exam-
ples from research on statin and antihypertensive utilization. Clinical
Therapeutics, 28, 1411–1424.

CDC. (2011) National diabetes fact sheet. http://www.cdc.gov/diabe
tes/pubs/factsheet11.htm

CDC Diabetes Cost-Effectiveness Group. (2002) Cost-effectiveness of
intensive glycemic control, intensified hypertension control, and serum
cholesterol level reduction for type 2 diabetes. JAMA, 287(19), 2542–
2551.

Chapman, R. H., Ferrufino, C. P., Kowal, S. L., Classi, P., and Roberts, C.
S. (2010) The cost and effectiveness of adherence-improving interven-
tions for antihypertensive and lipid-lowering drugs. Int J Clin Pract,
64(2), 169–181.

Chhatwal, J., Alagoz, O., and Burnside, E. S. (2010) Optimal breast biopsy
decision-making based on mammographic features and demographic
factors. Operations Research, 58(6), 1577–1591.

Cleeman, J. I., Grundy, S. M., Becker, D., Clark, L. T., Cooper, R. S., Denke,
M. A., Howard, W. J., Hunninghake, D. B., Illingworth, D. R., Luepker,
R. V., McBride, P., McKenney, J. M., Pasternak, R. C., Stone, N. J., Van
Horn, L., Brewer, H. B., Ernst, N. D., Gordon, D., Levy, D., Rifkind, B.,
Rossouw, J. E., Savage, P., Haffner, S. M., Orloff, D. G., Proschan, M.
A., Schwartz, J. S., Sempos, C. T., Shero, S. T., and Murray, E. Z. (2001)
Executive summary of the Third Report of the National Cholesterol
Education Program (NCEP) expert panel on detection, evaluation, and
treatment of high blood cholesterol in adults (Adult Treatment Panel
III). JAMA, 285(19), 2486–2497.

CMS. (2012) Medicare Health & Drug Plan Quality and Performance Rat-
ings: 2013 Part C & Part D Technical Notes: First Plan Preview. Centers
for Medicare & Medicaid Services, Baltimore, MD.

CMS. (2016) Center for Medicare and Medicaid innovation: Our mission.
https://innovation.cms.gov/about/our-mission/index.html

Curtis, L. H., Brown, J., and Platt, R. (2014) Four health data networks illus-
trate the potential for a shared nationalmultipurpose big-data network.
Health Affairs, 33(7), 1178–1186.

Cutler, D. M., and Everett, W. (2010) Thinking outside the pillbox—
Medication adherence as a priority for health care reform. The New
England Journal of Medicine, 362, 1553–1555.

Danaei, G., Friedman, A. B., Oza, S., Murray, C. J. L., and Ezzati, M. (2009)
Diabetes prevalence and diagnosis in U.S. states: Analysis of health sur-
veys. Population Health Metrics, 7, 16.

Danford, C. P., Navar-Boggan, A. M., Stafford, J., McCarver, C., Peterson,
E. D., and Wang, T. Y. (2013) The feasibility and accuracy of evaluat-
ing lipid management performance metrics using an electronic health
record. American Heart Journal, 116(4), 701–708.

Denton, B. T., Kurt, M., Shah, N. D., Bryant, S. C., and Smith, S. A. (2009)
Optimizing the start time of statin therapy for patients with diabetes.
Med Decis Making, 29, 351–367.

Dixon, B. E., Jabour, A. M., Phillips, E. O., and Marrero, D. G. (2013)
An informatics approach to medication adherence assessment and
improvement using clinical, billing, and patient-entered data. J AmMed
Inform Assoc, 517–521. doi:10.1136/amiajnl-2013-001959

Earnshaw, S. R., Richter, A., Sorensen, S. W., Hoerger, T. J., Hicks, K. A.,
Engelgau, M., Thompson, T., Narayan, V., Williamson, D. F., Gregg, E.,
and Zhang, P. (2002) Optimal allocation of resources across four inter-
ventions for type 2 diabetes.Medical Decision Making, 22(Suppl), S80–
S91.

Evans, C., Tavakoli, M., and Crawford, B. (2004) Use of quality adjusted life
years and life years gained as benchmarks in economic evaluations: A
critical appraisal. Health Care Management Science, 7(1), 43–49.

http://orcid.org/0000-0001-8375-2475
http://orcid.org/0000-0002-6255-4485
http://www.cdc.gov/diabetes/pubs/factsheet11.htm
https://innovation.cms.gov/about/our-mission/index.html
https://doi.org/10.1136/amiajnl-2013-001959


208 J. M. LOBO ET AL.

Gold, M. R., Siegel, J. E., Russell, L. B., and Weinstein, M. C., eds. (1996)
Cost-Effectiveness in Health and Medicine. Oxford University Press,
New York.

Gorman, C. A., Zimmerman, B. R., Smith, S. A., Dinneen, S. F., Knudsen, J.
B., Holm, D., Jorgensen, B., Bjornsen, S., Planet, K., Hanson, P., and
Rizza, R. A. (2000) DEMS: A second generation diabetes electronic
management system. Computer Methods and Programs in Biomedicine,
62(2), 127–140.

Haynes, K., Selvam, N., and Cziraky, M. J. (2016) Bidirectional data collab-
orations in distributed research. eGEMs, 4(2), Article 1.

Ho, P. M., Magid, D. J., Masoudi, F. A., McClure, D. L., and Rumsfeld,
J. S. (2006) Adherence to cardioprotective medications and mortality
among patients with diabetes and ischemic heart disease. BMC Car-
diovascular Disorders, 6(48), 48–56.

Jha, A. K., Aubert, R. E., Yao, J., Teagarden, J. R., and Epstein, R. S. (2012)
Greater adherence to diabetes drugs is linked to less hospital use and
could save nearly $5 billion annually.Health Affairs, 31(8), 1836–1846.

Klein, M (1962) Inspection-maintenance-replacement schedules under
Markovian deterioration.Manage Sci, 9(1), 25–32.

Kothari, V., Stevens, R. J., Adler, A. I., Stratton, I. M., Manley, S. E., Neil,
H. A., and Holman, R. R. (2002) UKPDS 60: Risk of stroke in type 2
diabetes estimated by the United Kingdom prospective diabetes study
risk engine. Stroke, 33(7), 1776–1781.

Kripalani, S., Yao, X., and Haynes, R. B. (2007) Interventions to enhance
medication adherence in chronic medical conditions: A systematic
review. Arch Intern Med, 167(6), 540–549.

Kurt, M., Denton, B. T., Schaefer, A., Shah, N., and Smith, S. (2011) The
structure of optimal statin initiation policies for patients with type 2
diabetes. IIE Transactions on Healthcare, 1(1), 49–65.

Maillart, L. M., Ivy, J. S., Ransom, S., and Diehl, K. (2008) Assessing
dynamic breast cancer screening policies. Operations Research, 56(6),
1411–1427.

Mason, J. E. (2012) Markov decision processes and approximate
dynamic programming methods for optimal treatment design.
Ph.D. thesis, North Carolina State University, http://wwwlib.ncsu..
edu/resolver/1840.16/7925

Mason, J. E., England, D. A., Denton, B. T., Smith, S. A., Kurt, M., and
Shah, N. D. (2012) Optimizing statin treatment decisions for diabetes
patients in the presence of uncertain future adherence.MedDecisMak-
ing, 32(1), 154–166.

National Center for Health Statistics. (2007) National Vital Statistics
Reports. CDC, Hyattsville, MD.

National Committee for Quality Assurance. (2007) HEDIS 2007 Volume 2
Technical Specifications. Washington, DC.

National Committee for Quality Assurance. (2015)HEDIS 2016: Healthcare
Effectiveness Data and Information, Set. Vol. 2, Technical Specifications
for Health Plans. Washington, DC.

National Institutes of Health. (2011) Adherence research network.
http://obssr.od.nih.gov/scientific_areas/health_behaviour/adherence/
adherenceresearchnetwork.aspx

Osterberg, L., and Blaschke, T. (2005) Adherence to medication. New Eng-
land Journal of Medicine, 353, 487–497.

Puterman, M. L. (1994) Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Hoboken, NJ.

Rasmussen, J. N., Chong, A., and Alter, D. A. (2007) Relationship between
adherence to evidence-based pharmacotherapy and long-termmortal-
ity after acute myocardial infarction. JAMA, 297(2), 177–186.

Red Book. (2009)Red Book: 2009 Edition. ThomsonHealthcare, Inc.,Mont-
vale, NJ.

Rho,M. J., Kim, S. R., Park, S.H., Jang, K. S., Park, B. J., Hong, J. Y., andChoi,
I. Y. (2016)Commondatamodel for decision support systemof adverse
drug reaction to extract knowledge from multi-center database. Infor-
mation Technology and Management, 17(1), 57–66.

Shechter, S. M., Bailey, M. D., Schaefer, A. J., and Roberts, M. S. (2008)
The optimal time to initiate HIV therapy under ordered health states.
Operations Research, 56(1), 20–33.

Skevington, S. M., and Wright, A. (2001) Changes in the quality of life of
patients receiving antidepressant medication in primary care: Valida-
tion of theWHOQOL-100. The British Journal of Psychiatry, 178, 261–
267.

Sokol, M. C., McGuigan, K. A., Verbrugge, R. R., and Epstein, R. S. (2005)
Impact of medication adherence on hospitalization risk and healthcare
cost.Medical Care, 43(6), 521–530.

Steiner, J. F. (2012) Rethinking adherence.Annals of Internal Medicine, 157,
580–585.

Stevens, R. J., Kothari, V., Adler, A. I., Stratton, I. M., and Holman, R. R.
(2001) The UKPDS risk engine: A model for the risk of coronary heart
disease in type 2 diabetes (UKPDS 56). Clinical Science, 101(6), 671–
679.

Thom, T., Haase, N., Rosamond,W.,Howard, V. J., Rumsfeld, J.,Manolio, T.,
Zheng, Z. J., Flegal, K., O’Donnell, C., Kittner, S., Lloyd-Jones, D., Goff,
D. C., Hong, Y. L., Adams, R., Friday, G., Furie, K., Gorelick, P., Kissela,
B., Marler, J., Meigs, J., Roger, V., Sidney, S., Sorlie, P., Steinberger, J.,
Wasserthiel-Smoller, S., Wilson, M., and Wolf, P. (2006) Heart disease
and stroke statistics: 2006 Update: A report from the American Heart
Association Statistics Committee and Stroke Statistics Subcommittee.
Circulation, 113(6), E85–E151.

US Census Bureau. (2011) 2010 Census Summary File 1: United States. U.S.
Census Bureau, Washington, DC.

USHHSDepartment. (2011) Electronic health records andmeaningful use.
http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_
gov__meaningful_use_announcement/2996

Vervloet, M., Linn, A. J., van Weert, J. C. M., de Bakker, D. H., Bouvy, M.
L., and vanDijk, L. (2012) The effectiveness of interventions using elec-
tronic reminders to improve adherence to chronic medication: A sys-
tematic review of the literature. J Am Med Inform Assoc, 19, 696–704.

Wallace, P. J., Shah, N. D., Dennen, T., Bleicher, P. A., and Crown, W. H.
(2014) Optum labs: Building a novel node in the learning health care
system. Health Affairs, 33(7), 1187–1194.

West, S. L., Johnson,W., Visscher,W., Kluckman,M., Qin, Y., and Larsen, A.
(2014) The challenges of linking health insurer claims with electronic
medical records. Health Informatics Journal, 20(1), 22–34.

Weymiller, A. J., Montori, V. M., Jones, L. A., Gafni, A., Guyatt, G. H.,
Bryant, S. C., Christianson, T. J.H.,Mullan, R. J., and Smith, S. A. (2007)
Helping patients with type 2 diabetes mellitus make treatment deci-
sions. Archives of Internal Medicine, 167, 1076–1082.

Wright, J. C., and Weinstein, M. C. (1998) Gains in life expectancy from
medical interventions: Standardizing data on outcomes. New England
Journal of Medicine, 339, 380–386.

Appendix A: Proofs of lemmas and theorem from
Section 5, and additional structural
properties

A.1. A note about AssumptionA4

In this subsection, we detail a situation in which AssumptionA4
holds. Suppose that the disutility associated with statin use has
the form

DMED × g(u),

whereDMED is the “baseline” discount inQALYs associated with
statin use, and g(u) is differentiable and nonincreasing in the
adherence percentage a. For example, suppose that

g(u) = 1.0 − 1.0u

for 0 ≤ u ≤ 1 so that the disutility associated with statin use is
actually decreasing as the adherence percentage increases. Then,
we have

R × Q(u) −CMED(u) = R × [1 − DMEDg(u)] −CMED(u) (A1)
= R − [R × DMED × g(u) +CMED × (u)],

(A2)

http://www.lib.ncsu.edu/resolver/1840.16/7925
http://obssr.od.nih.gov/scientific_areas/health_behaviour/adherence/adherenceresearchnetwork.aspx
http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__meaningful_use_announcement/2996
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whereCMED(u) is the full cost of statins for adherence percent-
age (a). A sufficient condition for AssumptionA4 to hold is that

d
du

g(u) ≤ −
d
duC

MED(u)

(R × DMED)

for 0 ≤ u ≤ 1.
Assuming statins cost CMED(u) = $212u and the disutility

associated with statin use isDMED = 0.003, AssumptionA4 will
hold when R ≥ $70,667. Thus, Assumption A4 will hold for the
base case value ofR= $100,000. On the other hand, Assumption
A4 will not hold if R = $50,000 unless the cost CMED(u) is less
than or equal to $150, assuming DMED stays constant.

A.2. Proofs of themain lemmas and theorem

Proof of Lemma 1. Since P̃t (at ) is IFR by assumption A1, with
(i, j) element p̃t ( j|i, at ) ≡ [P̃t (at )]i, j, it follows that for each k ∈
{1, . . . ,M}, the quantity q̃t (k|i, at ) = ∑M

j=k p̃t ( j|i, at ) is non-
decreasing in i for i = 1, . . . ,M. The matrix multiplication
diag[1M − p̄t ]P̃t (at ) involves multiplying the ith row of P̃t (at )
through by 1 − [ p̄t ]i for i ∈ {1, . . . ,M}. Therefore, since 1 −
[ p̄t ]i is nondecreasing in i by assumption A3, it follows that the
(M + 2) × M matrix

Y ≡

⎡
⎢⎣

0ᵀM
0ᵀM

diag[1M − p̄t ]P̃t (at )

⎤
⎥⎦ (A3)

with (u, v ) element Yu,v for u ∈ {0, 0′, 1, . . . ,M} and
v ∈ {1, . . . ,M} satisfies the following IFR-like property:
for each fixed k ∈ {1, . . . ,M}, the function y(u) ≡ ∑M

v=k Yu,v
is nondecreasing in u for u ∈ {0, 0′, 1, . . . ,M}. Similarly, it
follows that the (M + 2) × (M + 1) matrix

Z ≡

⎡
⎢⎣

0 0ᵀM
0 0ᵀM
p̄t diag[1M − p̄t ]P̃t (at )

⎤
⎥⎦ (A4)

with (u, v ) element Zu,v for u ∈ {0, 0′, 1, . . . ,M} and
v ∈ {0′, 1, . . . ,M} satisfies the following IFR-like property: for
each fixed k ∈ {0′, 1, . . . ,M}, the function z(u) ≡ ∑M

v=k Zu,v
is nondecreasing in u for u ∈ {0, 0′, 1, . . . ,M} because of the
following observations: (1) the matrix Z is obtained by concate-
nating the (M + 2)-dimensional column vector [0, 0, p̄ᵀt ]ᵀ and
the (M + 2) × MmatrixY , which has just been shown to satisfy
the required IFR-like property; and (2) for each of the last M
rows of Z, the row sums to 1 because a one-step transition from
the associated adherence state to the absorbing state is impossi-
ble. Finally, we observe that Pt (at ) is obtained by concatenating
the (M + 2)-dimensional column vector [1, 1, 0ᵀM]

ᵀ and the
(M + 2) × (M + 1)matrixZ, which has just been shown to sat-
isfy the IFR-like property; therefore Pt (at ) satisfies the required
IFR property because each row of the latter matrix sums
to 1. �
Proof of Lemma 2. The proof of Lemma 2 parallels the argu-
ment justifying Proposition 4.7.3 of Puterman (1994) after prop-
erly accounting for the exclusion of the absorbing state from
assumptions A2 and A4. Now rt (0, at ) = 0 for t ∈ {1, . . . ,T −

1} and for at ∈ At (0) by (2), and we have vT (0) = 0 by (4);
therefore, from the optimality Eq. (3) for state 0, we see that

vt (0) = 0 for t ∈ {1, . . . ,T − 1}. (A5)

The rest of the proof that vt (st ) is nondecreasing in st for
st ∈ S \ {0} and t ∈ {1, . . . ,T} requires us to exploit the opti-
mality Eq. (3) for state st and any other state s†t ≥ st togetherwith
the IFR property of Pt (at ), Eq. (A5), and Lemma 4.7.2 of Puter-
man (1994) in a backward induction argument that proceeds as
follows. First, we observe that at time T , assumptionA2 and Eq.
(4) ensure that vT (sT ) is nondecreasing for sT ∈ S \ {0}. Now
we assume that vu(su) is nondecreasing in su for su ∈ S \ {0}
and u ∈ {t + 1, . . . ,T}. From the optimality equation for state
st ∈ S \ {0} with optimal action a∗

t (st ), we have by (A5) that

vt (st ) = rt
(
st , a∗

t (st )
) + λ

∑
j∈S\{0}

pt
(
j|st , a∗

t (st )
)
vt+1( j).

(A6)
We choose another adherence state s†t ≥ st arbitrarily. To show
that vt (s†t ) ≥ vt (st ), we exploit the IFR property ofPt (at ) to con-
clude that for s‡u ∈ S \ {0}, the function

qu
(
k|s‡u, au

) ≡
M∑
j=k

pu
(
j|s‡u, au

)
(A7)

is nondecreasing in s‡u for all k ∈ S, au ∈ Au(s‡u), and u ∈
{1, . . . ,T}.We apply Puterman’s Lemma4.7.2 inwhichwemake
the associations x′

j ↔ pt ( j|st , a∗
t (st )), x j ↔ pt ( j|s†t , a∗

t (st )),
and v j ↔ vt+1( j) for j ∈ S \ {0}. With the latter assignments,
we can combine Eq. (2), assumption A4, Eq. (A6), and the defi-
nition (A7) of qu(k|s‡u, au) to conclude from Puterman’s Lemma
4.7.2 that

vt (st ) ≤ rt
(
s†t , a

∗
t (st )

) + λ
∑
j∈S\{0}

pt
(
j|s†t , a∗

t (st )
)
vt+1( j)

≤ max
at∈At (s†t )

{
rt
(
s†t , at

) + λ
∑
j∈S

pt
(
j|s†t , at

)
vt+1( j)

}
= vt

(
s†t
)

by (A5) and the optimality Eq. (3) for state s†t . Thus we see that
vt (st ) is nondecreasing in st for st ∈ S \ {0} so the induction
hypothesis is satisfied. �
Proof of Theorem 1. The proof parallels the analysis estab-
lishing Theorem 4.7.4 of Puterman (1994) after making suit-
able adjustments to handle states 0 and 0′ separately. For con-
venience, we make the assignment at (st ) = 0 when taking the
actionW at time t given than the patient is in health state st ∈
S; similarly, we assign at (st ) = 1 when taking action I at time
t given the patient’s health state st ∈ S for t ∈ {1, . . . ,T − 1}.
Because At (st ) = {W} for st ∈ {0, 0′}, we have a∗

t (st ) = 0 for
st ∈ {0, 0′} and t ∈ {1, . . . ,T − 1}.

Paralleling the proof of Theorem 4.7.4 of Puterman (1994),
the following properties are essential to the argument for each
t ∈ {1, . . . ,T − 1}:

B1: rt (st , at ) is nondecreasing in st for st ∈ S \ {0, 0′} and
at ∈ {0, 1};

B2: qt (k|st , at ) as defined by Eq. (A7) is nondecreasing in st
for st ∈ S \ {0, 0′} and for all k ∈ S, at ∈ {0, 1};
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B3: rt (st , at ) is a subadditive function on [S \ {0, 0′}] ×
{0, 1};

B4: qt (k|st , at ) is a subadditive function on [S \ {0, 0′}] ×
{0, 1} for all k ∈ S; and

B5: the terminal value function vT (sT ) is nondecreasing in
sT for sT ∈ S \ {0, 0′}.

Property B1 follows immediately from Eq. (2) and assumption
A4. Properties B2 and B5 follow from Lemmas 1 and 2, respec-
tively. Verifying property B3 is equivalent to showing that for
every η ∈ {1, . . . ,M − 1} and st ∈ {1, . . . ,M − η} and for at =
0, the second partial difference

�
st
�
at

rt (st , 0) ≡ rt (st + η, 1) − rt (st + η, 0)

−rt (st , 1) + rt (st , 0)

is nonpositive. By (2) we have

�
st
�
at
rt (st , 0) = [R × Q(st + η) −CMED(st + η) −CINT]

− [R × Q(st + η) −CMED(st + η)]
− [R × Q(st ) −CMED(st ) −CINT]
+ [R × Q(st ) −CMED(st )]

= 0 for η ∈ {1, . . . ,M − 1},
st ∈ {1, . . . ,M − η}, and

t ∈ {1, . . . ,T − 1}.
The verification of condition B4 is similar to the verification

of condition B3. For η ∈ {1, . . . ,M − 1}, st ∈ {1, . . . ,M − η},
k ∈ S, and t ∈ {1, . . . ,T − 1}, the second partial difference

�
st
�
at
qt (k|st , 0) = [qt (k|st + η, 1) − qt (k|st , 1)]

− [qt (k|st + η, 0) − qt (k|st , 0)] (A8)

must be nonpositive for the following reasons: (1) by assump-
tion, the effect of an intervention at time t is independent of
the patient’s health state at that time so that the first term in
square brackets on the right-hand side of Eq. (A8) must van-
ish; and (2) Lemma 1 ensures that the second term in square
brackets is nonnegative. Thus we see that �st�at qt (k|st , 0) ≤
0 for η ∈ {1, . . . ,M − 1}, st ∈ {1, . . . ,M − η}, k ∈ S, and t ∈
{1, . . . ,T − 1} so that property B4 follows.

To complete the proof of Theorem 1, we need to establish that
the function

wt (st , at ) ≡ rt (st , at ) +
M∑
j=1

pt ( j|st , at )vt+1( j)

is subadditive on [S \ {0, 0′}] × {0, 1}. By the subadditivity of
qt (k|st , at ) on [S \ {0, 0′}] × {0, 1} for all k ∈ S, we have for
1 ≤ s−t ≤ s+t ≤ M, 0 ≤ a−

t ≤ a+
t ≤ 1, and k ∈ S,

M∑
j=k

[
pt
(
j|s−t , a−

t
) + pt

(
j|s+t , a+

t
)]

≤
M∑
j=k

[
pt
(
j|s−t , a+

t
) + pt

(
j|s+t , a−

t
)]

. (A9)

By Lemma 2, the value function vt+1( j) is nondecreasing for
j ∈ S \ {0, 0′}; therefore, we can apply Lemma 4.7.2 of Puterman

(1994) to obtain

M∑
j=1

[
pt
(
j|s−t , a−

t
) + pt

(
j|s+t , a+

t
)]

vt+1( j)

≤
M∑
j=1

[
pt
(
j|s−t , a+

t
) + pt

(
j|s+t , a−

t
)]

vt+1( j). (A10)

For η ∈ {1, . . . ,M − 1} and st ∈ {1, . . . ,M − η}, we can
express (A10) as

0 ≥
M∑
j=1

[
�
st
�
at
pt ( j|st , 0)

]
vt+1( j) = �

st
�
at

⎡
⎣ M∑

j=1

pt ( j|st , 0)vt+1( j)

⎤
⎦ ;

(A11)

and from property B3 we obtain the analogous result

�
st
�
at
rt (st , 0) ≤ 0 for η ∈ {1, . . . ,M − 1}, st ∈ {1, . . . ,M − η},

and t ∈ {1, . . . ,T − 1}. (A12)

Combining (A11) and (A12) we see that�st�atwt (st , 0) ≤ 0 for
η ∈ {1, . . . ,M − 1}, st ∈ {1, . . . ,M − η}, and t ∈ {1, . . . ,T −
1}, so that wt (st , at ) is subadditive on [S \ {0, 0′}] × {0, 1}.
Applying Lemma 4.7.1 of Puterman (1994), we see that there
exists a control limit s∗t for t ∈ {1, . . . ,T − 1} such that Eq. (5)
holds. �

A.3. Intervention effectiveness

This subsection and the following subsection present proposi-
tions based on the comparison of optimal policies for different
types of interventions and different types of patients. Note that
although these propositions both have shortcomings since they
depend on the optimal value function, we feel they are valuable
to include, given that they provide intuition about the struc-
ture of the problem being solved. We begin with a definition of
stochastic dominance relevant to the two propositions.

Definition 1. Given t ∈ {1, . . . ,T − 1}, st ∈ S, and at ∈ At (st ),
the one-step transition probability matrix P(1)

t (at ) is said
to stochastically dominate P(2)

t (at ), denoted by P(1)
t (at ) �

P(2)
t (at ), if

M∑
j=k

P(1)
t ( j|i, at ) ≥

M∑
j=k

P(2)
t ( j|i, at ) for every i, k ∈ S,

where successive values of j and k are always understood to be
taken in the order 0, 0′, 1, 2, . . . ,M.

In the context of the following two propositions, stochastic
dominance represents that a transition probability matrix for a
particular action is superior to a transition probability matrix
for another action in terms of the probability of remaining in
high adherence states. In order to differentiate the control lim-
its for two interventions, we introduce the following notation:
s∗t (I�) represents the optimal control limit for intervention I� for
� = 1, 2. In addition, we use a superscript to differentiate prob-
abilities, actions, and value functions from the twoMDPs in the
following lemma and proposition.
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Lemma 3. Given two MDPs, MDP1 with intervention I1 and
MDP2 with intervention I2, for which P(1)

t (I1) � P(2)
t (I2) and

P(1)
t (W ) ≡ P(2)

t (W ), the following is true:

v (1)
t (st ) ≥ v (2)

t (st ) for all t and for all st ∈ S. (A13)

Thus, when one intervention dominates another, the
expected future rewards can be no worse.

Proposition 1. Given MDP1 with intervention I1 and MDP2
with intervention I2, if v (2)

t (st + 1) − v (2)
t (st ) ≤ v (1)

t (st + 1) −
v (1)
t (st ) for all st ∈ {1, . . . ,M − 1} for t ∈ {1, . . . ,T − 1} and if
the two MDPs are identical except that P(1)

t (I1) � P(2)
t (I2) and

P(2)
t (I2) � P(2)

t (W ) for t ∈ {1, . . . ,T − 1}, then s∗t (I1) ≥ s∗t (I2)
for t ∈ {1, . . . ,T − 1}.

Proposition 1 can be interpreted as follows. If intervention I1
is more effective than intervention I2, then the optimal control
limit for I1 in MDP1 should be greater than or equal to the
optimal control limit for I2 in MDP2. In other words, under
the optimal policy, intervention I1 would be implemented
for a wider range of adherence states. Intervention I1 may
be used for patients in better adherence states than I2. The
condition that v (2)

t (st + 1) − v (2)
t (st ) ≤ v (1)

t (st + 1) − v (1)
t (st )

for all st ∈ {1, . . . ,M − 1} for t ∈ {1, . . . ,T − 1} intuitively
means that, under intervention I1, the improvement in the
value function realized by being in adherence state st + 1 rather
than state st at time t is at least as large as the corresponding
improvement in the value function under intervention I2. In
general, the value-function increments v (2)

t (st + 1) − v (2)
t (st )

and v (1)
t (st + 1) − v (1)

t (st ) will decrease with increasing
st ∈ {1, . . . ,M − 1}; and the assumed condition merely
requires that the increment v (1)

t (st + 1) − v (1)
t (st ) for the

more effective intervention decreases no faster than does the
corresponding increment v (2)

t (st + 1) − v (2)
t (st ) for the less

effective intervention I2 as the adherence state st improves
(increases). The result of Proposition 1 is partly due to this
assumption holding and the corresponding benefit provided by
the value function being in an improved adherence state. This
result also depends on the costs of interventions I1 and I2; in
order for the conclusion of Proposition 1 to hold in general, the
cost of intervention I1 must not exceed that of intervention I2.

Proof of Lemma 3. First we establish Eq. (A13) for the absorb-
ing and pre-absorbing states {0, 0′} separately, and then we use
backward induction to establish (A13) for the adherence states.
From Eqs. (2) and (4), we see that

v (1)
T (sT ) = v (2)

T (sT ) =
{−CF

T , if sT = 0′,
0, if sT = 0. (A14)

From Equation (A5), we have

v (1)
t (0) = v (2)

t (0) = 0 for t ∈ {1, . . . ,T − 1}. (A15)

Moreover from Eq. (2) and the optimality Eq. (3) for the pre-
absorbing state 0′, we see that

v (1)
t (0′) = v (2)

t (0′) = −CF
t for t ∈ {1, . . . ,T − 1}. (A16)

Combining (A14), (A15), and (A16), we see that Eq. (A13) holds
for st ∈ {0, 0′} and t ∈ {1, . . . ,T}.

To handle the adherence states, we start by noting that Eq. (4)
yields v (1)

T (sT ) = E[PDHR|sT ] = v (2)
T (sT ), for sT ∈ S \ {0, 0′}.

Thus, v (1)
T (sT ) ≥ v (2)

T (sT ) for sT ∈ S \ {0, 0′}. For the inductive
step, we assume v (1)

τ (sτ ) ≥ v (2)
τ (sτ ) for sτ ∈ S \ {0, 0′} and

τ ∈ {t + 1, . . . ,T}. Now we must show v (1)
t (st ) ≥ v (2)

t (st )
for st ∈ S \ {0, 0′}. Let a(2)∗

t (st ) be the optimal action for
MDP2 at time t for a patient in state st ∈ S \ {0, 0′}. It follows
that

v (1)
t (st ) ≥ rt

(
st , a(2)∗

t (st )
)

+λ

M∑
st+1=0

p(1)
t
(
st+1|st , a(2)∗

t (st )
)
v (1)
t+1(st+1)

(A17)
≥ rt

(
st , a(2)∗

t (st )
)

+λ

M∑
st+1=0

p(2)
t
(
st+1|st , a(2)∗

t (st )
)
v (1)
t+1(st+1)

(A18)

≥ rt
(
st , a(2)∗

t (st )
)

+λ

M∑
st+1=0

p(2)
t
(
st+1|st , a(2)∗

t (st )
)
v (2)
t+1(st+1)

= v (2)
t (st ) for st ∈ S. (A19)

Inequality (A17) follows from the fact that v (1)
t (st ), the optimal

value function for MDP1, is bounded below by the value func-
tion for any other policy (in this case, the optimal policy for
MDP2). To establish (A18), we observe that P(1)

t (I1) � P(2)
t (I2)

and P(1)
t (W ) ≡ P(2)

t (W ) together imply that

M∑
st+1=k

p(1)
t (st+1|st , a(2)∗

t (st )) ≥
M∑

st+1=k

p(2)
t
(
st+1|st , a(2)∗

t (st )
)
for

st ∈ S \ {0, 0′} and k ∈ S;
(A20)

and (A20) is a strict equality for k = 0′. Because v (1)
t (st ) is non-

decreasing in st for st ∈ S \ {0} by Lemma 2 earlier, we can apply
Puterman’s Lemma 4.7.2 to Eq. (A20), thereby showing that

M∑
st+1=0′

p(1)
t
(
st+1|st , a(2)∗

t (st )
)
v (1)
t+1(st+1)

≥
M∑

st+1=0′
p(2)
t
(
st+1|st , a(2)∗

t (st )
)
v (1)
t+1(st+1); (A21)

and in view of Eq. (A15), we see that the summations on both
sides of (A21) can be extended to start at the absorbing state 0,
so that, for st ∈ S \ {0, 0′}, we have

M∑
st+1=0

p(1)
t
(
st+1|st , a(2)∗

t (st )
)
v (1)
t+1(st+1)

≥
M∑

st+1=0

p(2)
t
(
st+1|st , a(2)∗

t (st )
)
v (1)
t+1(st+1); (A22)
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and Inequality (A18) follows immediately from (A22).
Inequality (A19) holds by the inductive hypothesis. Thus,
v (1)
t (st ) ≥ v (2)

t (st ) for all t and for all st ∈ S. �

To prove Proposition 1, we must first establish the following
variant of Lemma 4.7.2 of Puterman (1994) in which the sum-
mations

∑
x j and

∑
x′
j are finite rather than infinite, and the

summands {x j} and {x′
j} are unconstrained in sign.

Lemma 4. Let J ≡ {0, 1, . . . , L} denote a finite index-set; and let
{x j : j ∈ J} and {x′

j : j ∈ J} be finite real-valued sequences satis-
fying

∑L
j=k x j ≥ ∑L

j=k x
′
j for k ∈ J and

∑L
j=0 x j = ∑L

j=0 x
′
j . If

v j+1 ≥ v j for j = 0, 1, . . . , L − 1, then
∑L

j=0 x jv j ≥
∑L

j=0 x
′
jv j .

Proof of Lemma 4. If in the proof of Puterman’s Lemma 4.7.2
we replace the infinite upper limit on each summation with the
upper limit L, then all summations are finite and hence well–
defined, even if some of the {x j : j ∈ J} or {x′

j : j ∈ J} are neg-
ative; and the same analysis used for Puterman’s Lemma 4.7.2
yields the desired conclusion. �
Proof of Proposition 1. The proof is by contradiction. If the
desired conclusion of the proposition is false, then there is a time
u ∈ {1, . . . ,T − 1} for which s∗u(I1) < s∗u(I2); therefore, we can
find an adherence state su ∈ S \ {0, 0′} such that s∗u(I1) < su ≤
s∗u(I2) and

R × Q(su) −CMED(su) −CINT

+λ

M∑
su+1=0

p(1)
u (su+1|su, I1)v (1)

u+1(su+1)

< R × Q(su) −CMED(su)

+λ

M∑
su+1=0

p(1)
u (su+1|su,W )v (1)

u+1(su+1),

because, by the construction of the control limit s∗u(I1) as speci-
fied in Lemma 4.7.1 of Puterman (1994), the right- and left-hand
sides of the previous display cannot be equal; and from the pre-
vious inequality, it follows immediately that

λ

M∑
su+1=0

[
p(1)
u (su+1|su, I1) − p(1)

u (su+1|su,W )
]
v (1)
u+1(su+1) < CINT.

(A23)
Moreover, because su ≤ s∗u(I2), we have

λ

M∑
su+1=0

[
p(2)
u (su+1|su, I2) − p(2)

u (su+1|su,W )
]
v (2)
u+1(su+1) ≥ CINT.

(A24)
From (A23), (A24), and the condition λ ∈ (0, 1], it follows that

M∑
su+1=0

[
p(1)
u (su+1|su, I1) − p(1)

u (su+1|su,W )
]
v (1)
u+1(su+1)

<

M∑
su+1=0

[
p(2)
u (su+1|su, I2) − p(2)

u (su+1|su,W )
]
v (2)
u+1(su+1).

(A25)

(Note that the formation of this inequality also relies on the con-
dition that the cost of intervention I1 must not exceed that of

intervention I2.) To contradict (A25), first wemust show that the
following two conditions always hold: (1) for all t ∈ {1, . . . ,T −
1} and for every st ∈ S \ {0, 0′} and k ∈ S, we have

M∑
st+1=k

[
p(1)
t (st+1|st , I1) − p(1)

t (st+1|st ,W )
]

≥
M∑

st+1=k

[
p(2)
t (st+1|st , I2) − p(2)

t (st+1|st ,W )
]
; (A26)

and (2) we have

v (1)
t (st ) ≥ v (2)

t (st ) for all st ∈ S and t ∈ {0, 1, . . . ,T}.
(A27)

Condition (A26) follows from the assumptions that P(1)
t (I1) �

P(2)
t (I2) and P(1)

t (W ) ≡ P(2)
t (W ) for t ∈ {1, . . . ,T − 1},

and condition (A27) follows from Lemma 3. Now, we use
conditions (A26) and (A27) to show that (A25) cannot
be true. By Lemma 4, the following inequality holds for
t ∈ {1, . . . ,T − 1}:

M∑
st+1=0′

[
p(1)
t (st+1|st , I1) − p(1)

t (st+1|st ,W )
]
v (1)
t+1(st+1)

≥
M∑

st+1=0′

[
p(2)
t (st+1|st , I2) − p(2)

t (st+1|st ,W )
]
v (1)
t+1(st+1).

(A28)

(Note that Lemma 4.7.2 of Puterman (1994) is not sufficient to
establish (A28) because the terms in square brackets in (A28)
are not all guaranteed to be nonnegative; and in this situation
Lemma 4 is required instead.) In view of Eq. (A15), we see that
the summation on both sides of (A28) can be extended to start
at the absorbing state 0, yielding

M∑
st+1=0

[
p(1)
t (st+1|st , I1) − p(1)

t (st+1|st ,W )
]
v (1)
t+1(st+1)

≥
M∑

st+1=0

[
p(2)
t (st+1|st , I2) − p(2)

t (st+1|st ,W )
]
v (1)
t+1(st+1)

(A29)

for st ∈ S \ {0, 0′} and t ∈ {1, . . . ,T − 1}. Finally, the fol-
lowing inequality holds by applying Lemma 4, the assump-
tions that v (2)

t (st + 1) − v (2)
t (st ) ≤ v (1)

t (st + 1) − v (1)
t (st ) for

all st ∈ {1, . . . ,M − 1} and t ∈ {1, . . . ,T − 1}, and P(2)
t (I2) �

P(2)
t (W ) for t ∈ {1, . . . ,T − 1} together with condition (A27):

M∑
st+1=0

[
p(2)
t (st+1|st , I2) − p(2)

t (st+1|st ,W )
]
v (1)
t+1(st+1)

≥
M∑

st+1=0

[
p(2)
t (st+1|st , I2) − p(2)

t (st+1|st ,W )
]
v (2)
t+1(st+1)

(A30)

for every st ∈ S \ {0, 0′} and t ∈ {1, . . . ,T − 1}. We establish
Eq. (A30) as follows. If in Lemma 4 wemake the following asso-
ciations: (i) x j ↔ p(2)

t (st+1 = j|st , I2) − p(2)
t (st+1 = j|st ,W ) for

j = 0′, 1, . . . ,M; (ii) x′
j ↔ 0 for j = 0′, 1, . . . ,M; and (iii) v j ↔
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v (1)
t+1(st+1 = j) − v (2)

t+1(st+1 = j) for j = 0′, 1, . . . ,M, then we
see from (A16) that

v j = 0 for j = 0′, (A31)

from Lemma 3 we have

v j ≥ 0 for j = 1, . . . ,M. (A32)

From (A31), (A32), and the assumption that v (2)
t (st + 1) −

v (2)
t (st ) ≤ v (1)

t (st + 1) − v (1)
t (st ) for all st ∈ {1, . . . ,M − 1}

and t ∈ {1, . . . ,T − 1}, we see that v j ≤ v j+1 for j =
0′, 1, . . . ,M − 1. Therefore, all the hypotheses of Lemma 4
are satisfied, so that we have

∑
j∈S\{0} v jx j ≥

∑
j∈S\{0} v jx′

j, from
which we immediately have

M∑
j=0′

[
p(2)
t (st+1 = j|st , I2) − p(2)

t (st+1 = j|st ,W )
]

×
[
v (1)
t+1(st+1 = j) − v (2)

t+1(st+1 = j)
]

≥ 0. (A33)

Rearranging (A33), we have

M∑
st+1=0′

[
p(2)
t (st+1|st , I2) − p(2)

t (st+1|st ,W )
]
v (1)
t+1(st+1)

≥
M∑

st+1=0′

[
p(2)
t (st+1|st , I2) − p(2)

t (st+1|st ,W )
]
v (2)
t+1(st+1);

(A34)

and in view of (A15), we can extend the summation on both
sides of (A34) so that they start at the absorbing state 0, yielding
Eq. (A30). Therefore, from (A29) and (A30) we have

M∑
st+1=0

[
p(1)
t (st+1|st , I1) − p(1)

t (st+1|st ,W )
]
v (1)
t+1(st+1)

≥
M∑

st+1=0

[
p(2)
t (st+1|st , I2) − p(2)

t (st+1|st ,W )
]
v (2)
t+1(st+1)

(A35)

for every st ∈ S \ {0, 0′} and t ∈ {1, . . . ,T − 1}. In view of
Inequality (A35), we see that (A25) is false; and thus the desired
conclusion follows immediately. �

A.4. Individual patient responses to interventions

In the final proposition, we use a superscript to index different
types of patients in order to compare the optimal intervention
thresholds for two types of patients. The superscript for a patient
of type A is (A) and the superscript for a patient of type B is (B).

Proposition 2. If P̃(A)
t (I) = P̃(B)

t (I) � P̃(B)
t (W ) = P̃(A)

t (W )

for t ∈ {1, . . . ,T − 1} and v (A)
t (st + 1) − v (A)

t (st ) ≤ v (B)
t (st +

1) − v (B)
t (st ) for all st ∈ {1, . . . ,M − 1} and t ∈ {1, . . . ,T − 1},

then for two patient types that are identical except that

[ p̄(A)
t ]i ≥ [ p̄(B)

t ]i, for every i = 1, . . . ,
M and for t ∈ {1, . . . ,T − 1}, (A36)

and

v (A)
T (sT ) ≤ v (B)

T (sT ), for every sT ∈ S, (A37)

then we have

P(B)
t (W ) � P(A)

t (W ), P(B)
t (I) � P(A)

t (I), (A38)

and

s∗(A)
t ≤ s∗(B)

t for t ∈ {1, . . . ,T − 1}. (A39)

Proposition 2 states that if a patient of type A has a higher
probability ofmoving to the pre-absorbing state than a patient of
type B, then a patient of type B should have interventions in the
same or better adherence states when compared with a patient
of type A. Since P(B)

t (I) � P(A)
t (I), a patient of type A, the sicker

patient, receives less benefit from interventions than a patient
of type B. Interventions that are optimal for a patient of type B
with better adherencemay not be optimal for a patient of type A.
This counterintuitive result provides a simple criterion for sort-
ing patients on the basis of importance of an intervention, which
could be useful for resource-constrained settings.

Proof of Proposition 2. To conserve space, we summarize the
main points, with references to the relevant methods used in
previous proofs. Equation (A38) is shown by an argument sim-
ilar to that involving (A3) and (A4) in the proof of Lemma 1.
We show Eq. (A39) using a proof by contradiction similar to the
proof of Proposition 1. If the desired conclusion (A39) is false,
then there is a time u ∈ {1, . . . ,T − 1} for which s∗(A)

u > s∗(B)
u ;

and by an argument similar to that involving Eqs. (A23)–(A25),
we deduce from the latter inequality that

M∑
su+1=0

[
p(B)
u (su+1|su, I) − p(B)

u (su+1|su,W )
]
v (B)
u+1(su+1)

<

M∑
su+1=0

[
p(A)
u (su+1|su, I) − p(A)

u (su+1|su,W )
]
v (A)
u+1(su+1).

(A40)

Then, by an argument paralleling Eqs. (A26)–(A35) we show
that the following relation is always true for every time t ∈
{1, . . . ,T − 1}:

M∑
st+1=0

[
p(B)
t (st+1|st , I) − p(B)

t (st+1|st ,W )
]
v (B)
t+1(st+1)

≥
M∑

st+1=0

[
p(A)
t (st+1|st , I) − p(A)

t (st+1|st ,W )
]
v (A)
t+1(st+1).

(A41)

Because (A41) contradicts (A40), the desired conclusion fol-
lows. �

Appendix B: Parameter estimation

B.1. Percentage of days covered (PDC)

We estimated the PDC for each individual for each year over
a four-year period after his or her first prescription for statins.
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Patients were required to have a one-year period with no statin
use prior to the first statins prescription. The PDC for an indi-
vidual can be calculated using the standard formula (Caetano
et al., 2006):

PDC = 100

×
(
days with an available supply of medication in the time period

days in time period

)
%.

(B1)

The numerator of Eq. (B1) is calculated using the statin pre-
scription fill dates and the days of supply for each prescrip-
tion. In the first year, the days of available supply are com-
puted by summing the days of supply for each prescription filled
during the first year, with two potential exceptions. If there
is continuous coverage of medication (i.e., there are no days
when all prior prescription days’ supplies have been exhausted)
and the total days’ supply over the first year is greater than
365, then the supply above 365 will be carried forward to the
following year. If there are gaps in prescription coverage but
there is excess supply from the last prescription(s) of the year,
the excess supply from the final prescription(s) will be carried
forward to the following year. An example of this scenario is pro-
vided in Fig. 1. The days of available supply in subsequent years
are computed in a similar manner, with the one difference being
the fact that any excess supply from previous years is added to
the beginning of the current year’s supply. The denominator of
Eq. (B1) was 365. This fraction wasmultiplied by 100 to obtain a
percentage for each individual. Each patient’s adherence in each
of the four years after statin initiation was classified as NON,
LOW, MED, or HIGH based on the PDC based on the adher-
ence state definitions in Table 1.

B.2. Percentage change in total cholesterol (TC) by
adherence state

The percentage change in TC was estimated for each patient by
computing the mean TC from all readings prior to statin initia-
tion and the mean TC during the period six months to one year
after initiation. The percentage change in TC for each adher-
ence state (as shown in Table 1) was computed by averaging the

percentage change in TC among all the patients in each adher-
ence state during the first year.

B.3. Adherence transition probabilities

The initial probability vector describing the proportion of
patients who entered each adherence state in the first year
after statin initiation was computed by dividing the number of
patients in the particular adherence state in the first year by the
total number of patients who initiated statins. The base case
intervention transition probability matrix, P̃t (I), consists of the
initial probability vector for each row of the matrix.

Two additional imperfect intervention transition probability
matrices were also considered: P̃t (IH) and P̃t (IUT). The matrix
P̃t (IH) was constructed to create a transition probability matrix
that is independent of the patient’s current adherence state and
does not result in high-adherence patients having a lower rate
of remaining in high adherence after an intervention than after
no intervention. This was done by editing the HIGH adherence
row of P̃t (W ) to have slightly decreased probabilities of enter-
ing NON, LOW, and MED (rounded down to the nearest hun-
dredth) and a slightly increased probability of entering HIGH
(to maintain a vector whose elements summed to 1). The result-
ing vector was used for each row of P̃t (IH). The matrix P̃t (IUT)

was constructed to ensure that patients would have the same or
better adherence after the intervention. We amended P̃t (I) by
setting all probabilities of entering a lower adherence state to 0
and normalizing the remaining nonzero entries on each row to
create a valid transition probability matrix.

The no intervention transition probability matrix P̃t (W )was
estimated using one-step transition data for the cohort of statin
initiation patients from years 1 through 4 after initiation. Ele-
ments of each one-step transition matrix (for years 1 to 2, 2
to 3, and 3 to 4) were calculated by counting the number of
patients in each beginning adherence state who transitioned to
each adherence state in the next time period and dividing by the
number of patients in the beginning adherence state. Since we
only observed small differences in the three transition matrices,
P̃t (W )was ultimately estimated by computing the average num-
ber of people who transitioned among the adherence states from
one year to the next.
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