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Abstract  Rapid advances in healthcare for chronic diseases such as cardiovascular disease, cancer,
and diabetes have made it possible to detect diseases at early stages and tailor treatment
based on individual patient risk factors including demographic factors and disease-specific
biomarkers. However, a large number of relevant risk factors, combined with uncertainty
in future health outcomes and the side effects of health interventions, makes clinical
management of diseases challenging for physicians and patients. Data-driven operations
research methods have the potential to help improve medical decision making by using
observational data that are now routinely collected in many health systems. Optimization
methods in particular, such as Markov decision processes and partially observable Markov
decision processes, have the potential to improve the protracted sequential decision-
making process that is common to many chronic diseases. This tutorial provides an in-
troduction to some of the most commonly used methods for building and solving models to
optimize sequential decision making. The context of chronic diseases is emphasized, but the
methods apply broadly to sequential decision making under uncertainty. We pay special
attention to the challenges associated with using observational data and the influence of
model parameter uncertainty and ambiguity.

Keywords stochastic dynamic programming ¢ Markov decision process ® hidden Markov model
chronic disease ¢ data analytics

1. Introduction

Chronic diseases are medical conditions that are managed over time, often for years or decades,
under uncertainty about future health outcomes. They include diseases such as cardiovascular
disease, cancer, and diabetes, which are collectively the most common causes of death in the
United States and many developed countries (Centers for Disease Control and Prevention
[28]). Rapid advances in health interventions such as diagnostic tests, medications, procedures,
and surgery have made it possible to detect chronic diseases at early stages and target
therapeutic interventions based on personal health history and risk factors. However, choosing
the right intervention at a particular time requires an understanding of uncertainty in disease
progression, disease outcomes, potential side effects of interventions, and future recourse
decisions. Randomized trials are considered the gold standard for decision making in medicine,
but they are often difficult or impossible to conduct because of their high cost, difficulty in
patient recruiting, and ethical barriers. Specifically, in the case of chronic diseases, the long
follow-up time needed to measure effects is a major difficulty. Furthermore, it is not practical
to try to test a large number of potential policies by way of randomized trials. For these
reasons, data-driven models have an important role to play in helping physicians improve
treatment decisions for patients with chronic diseases.
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Stochastic models are commonplace in the field of medicine where they have been used to
evaluate decisions in a broad range of contexts. Markov chains, in particular, are among the
most commonly used stochastic models for medical decision making. A keyword search of the
U.S. Library of Medicine Database using PubMed from 2007 to 2017 revealed more than 7,500
articles on the topic of Markov chains. Markov chains that include decisions (i.e., Markov
decision processes (MDPs)) have been applied much less; however, many applications in
medicine have emerged in recent years. In the context of chronic diseases, past work employing
MDPs includes liver transplant decisions (Alagoz et al. [2]), human immunodeficiency virus
(HIV) treatment (Shechter et al. [65]), breast cancer (Ayer et al. [8]), and cardiovascular
disease (Mason and Denton [51]), to name a few examples. This increasing trend in the
development of MDPs for medical decision making signals a broadening of scope from
descriptive/predictive models to include (prescriptive) optimization models.

Chronic diseases involve a sequential progression of decisions to control or halt the course of
the disease. The dependency among treatment decisions over time links the overall decision-
making process, making it important to consider a holistic policy for decision making, rather
than myopic decisions made in isolation at fixed points in time. The dynamic nature of
decisions and a large number of possible policies motivate the need for MDPs that can be used
to find optimal policies that account for uncertainty in future disease progression and health
outcomes. Validated stochastic models are the foundation for sequential decision making, but
creating such models is often challenging because of the imperfect nature of the longitudinal
data that are commonly available.

The longitudinal data needed for building and validating stochastic models reside largely in
observational data sources, such as electronic health records, insurance claims databases,
laboratory data storage systems, and other forms of data that are collected routinely as part of
the healthcare delivery process. These types of data are collected nonuniformly at time points
when patients see their providers, fill their prescriptions, or have laboratory tests, to name
a few examples. Moreover, these data are influenced by the very decisions made to treat
diseases, which in turn are influenced by sources of confounding that can lead to false causal
claims. For example, patients treated with blood pressure medication tend to have high blood
pressure. Thus, a naive approach that compares patients on blood pressure medication with
patients who are not on blood pressure medication could wrongly conclude that blood pressure
medication causes high blood pressure. Many such pitfalls exist in the use of observational data
to create data-driven models for chronic diseases.

Overcoming the above challenges of building stochastic models with observational data
would eliminate a major barrier to optimizing decision making but, at the same time, reveals
some additional challenges that must be considered. First, the combination of uncertainty,
multiple risk factors, and a large number of potential interventions makes finding optimal
policies difficult because of the curse of dimensionality, which is a fundamental challenge of
working with the multidimensional data generated for chronic diseases. Second, the imperfect
estimates of model parameters, as a result of natural statistical variation or other sources of
uncertainty in model estimates, raise questions about how well an “optimal” policy derived
from a model with a fixed set of parameter estimates will work in practice.

The challenges of using observational data are common to many contexts, but the sequential
decision-making process for chronic diseases makes these problems particularly difficult to deal
with because of the need to consider how decisions made today influence future decisions and
health outcomes. Methodological approaches for these types of problems include MDPs,
partially observable MDPs (POMDPs), and many other related methods. The main goal of
this tutorial is to provide a starting point for learning how to initiate research in the area of
sequential decision making for chronic diseases using these approaches. As such, this tutorial
provides guidance on model formulations, methods for fitting stochastic models for chronic
diseases using longitudinal data, and the subsequent solution of these models to find policies
for medical decision making.

RIGHTS L1 N Hig



Denton: Optimization of Sequential Decision Making for Chronic Diseases
318 Tutorials in Operations Research, (©) 2018 INFORMS

In this tutorial, we will make some simplifying assumptions about the models that we cover.
First, we assume that there is a finite set of health states and health intervention decisions.
This assumption is a reasonable starting point because these models are a stepping stone to
more complex models and because many diseases have a clinically meaningful discrete state
definition. Second, we focus on finite-horizon nonstationary models because chronic diseases
play out over the finite (but uncertain) lifetime of a patient and because they are often best
modeled as nonstationary because age is an important risk factor for chronic diseases. Finally,
we emphasize MDPs and POMDPs; however, we provide guidance on other approaches that
have been applied to sequential decision making for chronic diseases such as robust optimi-
zation and reinforcement learning. We cannot cover all of these topics in their entirety in this
short tutorial, so we provide references for the reader to learn more about specific topics along
the way. Excellent resources for general reading on the topic of sequential decision making
include Puterman [59], Bertsekas [8], and Sutton and Barto [72]. Sources for additional
background on MDPs for medical decision making include Schaefer [63], Alagoz et al. [1],
and Steimle and Denton [70]. A valuable source on “best practices” for estimating state
transition models, including Markov chains, can be found in Siebert et al. [66]. Finally, Gold
et al. [34] is an excellent reference on cost effectiveness in the context of medical decision
making.

The remainder of this tutorial is organized as follows. First, we begin with some background
on chronic diseases to set the foundation for the applications discussed in this tutorial. In
Section 3, we describe the main elements of models for sequential decision making with some
examples of choices that one must make during the model formulation process. Next, we
provide a generic formulation of an MDP model for optimizing the time to initiate health
interventions over the course of a disease. We also summarize the formulation of POMDP
models because these are highly relevant to chronic diseases. In Section 4, we discuss the
challenges of parameter estimation of models using longitudinal data, and we give examples in
the context of diabetes treatment and cancer surveillance. In Section 5, we discuss typical data
sources for model building and approaches for addressing model uncertainty and ambiguity. In
Section 6, we discuss examples of alternative approaches to sequential decision making. Fi-
nally, in Section 7, we make some concluding remarks and comment on future opportunities for
research on sequential decision making for chronic diseases.

2. Chronic Diseases

Chronic diseases are the leading cause of death and the largest source of cost to the U.S. health
system, accounting for more than 80% of the nation’s healthcare costs (Centers for Disease
Control and Prevention [28]). Many patients can live for years or even decades with chronic
diseases if they are detected early and treated optimally. But the decisions faced by patients
and physicians are difficult because of a large number of potential interventions and the
stochastic nature of diseases. The stages of the decision-making process for chronic diseases can
be broadly categorized as prevention, diagnosis, treatment, and posttreatment. One reason for
the difficulty in decision making for chronic diseases is that these stages are often linked
because long-term measures of health, such as quality-adjusted life span, are influenced by the
decisions made during all stages of the disease. A thorough understanding of risk factors and
how they change as patients age is crucial for optimizing decisions in a way that balances the
benefits and harms of health interventions. The benefit-versus-harm trade-off depends on (a)
the risk of adverse outcomes from surgery versus the potential health benefits if the surgery is
successful, (b) the reduction in the risk of future adverse events from medications versus the
daily side effects from treatment, and (c) or the anxiety associated with biomarker tests versus
the benefit of early detection of a disease. The presence of other diseases or conditions
(comorbidities) plays an important role in weighing the benefit-versus-harm trade-off for
health interventions because comorbidities can constrain the use of health interventions or
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reduce the benefit of health interventions in some cases. In the remainder of this section, we
briefly summarize each of the decision-making stages.

Prevention aims to reduce the incidence of disease in a healthy population by using bio-
markers to identify patients at risk of developing a disease or in early stages of the onset of
a disease when the natural course of the disease can be controlled or halted. In this tutorial, we
use the general term “biomarker” to refer to the wide range of measurable indicators of disease.
Biomarker tests include physiological measures associated with a condition or disease (e.g.,
blood pressure, heart rate, cholesterol level) and genes or proteins that can be detected using
blood tests, urine tests, or tissue-based analysis. Prevention frequently involves screening of
a healthy population using biomarkers to spot early signs of disease. Optimal decisions about
biomarkers, such as the choice of which biomarker to use and the frequency of testing, can be
difficult because most biomarkers have significant false-positive and false-negative rates.
These errors can cause harm to healthy patients because of subsequent referrals for un-
necessary diagnostic tests (false negatives) and failure to identify patients who are experi-
encing the onset of chronic disease (false positives).

Diagnosis aims to characterize the presence and nature of a condition or a disease for
patients believed to be at risk, often using diagnostic tests and patient-reported symptoms.
Diagnostic tests include imaging tests (e.g., computer tomography (CT), magnetic resonance
imaging (MRI), ultrasound) and procedures such as cardiac catheterization, colonoscopy, or
upper endoscopy. Similar to biomarkers, all diagnostic tests have some probability of a false-
positive or false-negative outcome. Therefore, in some cases, a collection of diagnostic tests
may be used in combination to make a diagnosis. Often a noninvasive test is used to decide
whether to recommend a patient for a more invasive test or procedure. For example, the fecal
occult blood test may be used to decide whether to perform a colonoscopy when screening for
colon cancer.

Treatment frequently aims to control the risk of adverse complications and ease the burden
of the disease. This long-term phase of care may also include regular surveillance tests to
monitor the potential progression or recurrence of the disease over time. For example, patients
with type 2 diabetes are recommended to have an HbAlc test—a test for monitoring long-term
glucose exposure—every three months to evaluate the need for additional treatment.
Treatment of chronic diseases may include prescription medications, procedures, surgery, or
other health services. In the case of prescription medication, often decisions must be made
about which medications to recommend. For example, there are many medications available to
control the risk of cardiovascular disease, and the best choice may depend on the patient’s
overall risk profile and the patient’s response to medication, which is unknown at the time of
selection of treatment. It is important to consider both the positive benefits (e.g., cholesterol or
blood pressure reduction) and the side effects (e.g., nausea, muscle pain, deterioration in liver
function) of medication. In some cases, multiple health interventions may be used in com-
bination as the disease progresses over time and a patient’s risk increases. When tests or
procedures are used to monitor a chronic disease, decisions about the frequency and intensity
of the interventions may arise. For example, Avastin and Lucentis are two drugs that are used
to control macular degeneration, a leading cause of blindness in adults. The drugs are injected
in the eye in a short outpatient procedure, and the optimal frequency of injections depends on
the balance between the benefits of the injections in controlling the degeneration of vision and
the side effects and cost of regular injections.

Posttreatment care involves the clinical management of side effects of major treatment such
as surgery or radiation therapy, sometimes requiring additional procedures, further treatment,
or continual monitoring (often referred to as surveillance). For example, patients with lo-
calized breast cancer may have a lumpectomy to remove a tumor surgically. This is often
followed by adjuvant radiation therapy or chemotherapy for a set course of treatment over
days or weeks; moreover, it may be recommended that a patient with a history of breast cancer
have more frequent mammograms (e.g., every six months instead of annually). In many cases,
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patients received regular surveillance tests with the goal of identifying possible recurrence of
the disease. These could include clinical exams, biomarker tests, or procedures such as en-
doscopy. Patients who experience progression of chronic diseases to a terminal stage may seek
palliative care, which is aimed at controlling the symptoms and stress of serious illness. In the
worst case, the patient may progress to hospice care, which concentrates on symptom care at
the end of life.

The above categories of decisions—prevention, diagnosis, treatment, and posttreatment
care—are often interrelated as a result of the propensity for future (anticipated) decisions to
influence what is best at present. One such example is in the area of prostate cancer, which is
a disease with well-defined stages, each with important and unique decisions as illustrated in
Figure 1. Prostate cancer screening is commonly implemented using the prostate-specific
antigen (PSA) test. This simple blood test is used to detect latent prostate cancer, before it
becomes symptomatic when surgery is a potential cure. However, the risk of mortality for some
prostate cancers is very low, and therefore other-cause mortality risk—that is, the risk of dying
from any cause other than prostate cancer—plays an important role in determining the benefit
to a patient of detecting prostate cancer. For men over the age of 75, the American Urology
Association recommends against PSA screening because older patients are unlikely to be
treated because the benefit of treatment is very low compared with the risk of “other-cause”
mortality (e.g., cardiovascular disease or any cause of death other than prostate cancer). This
interdependence between disease stages is very common for chronic diseases, which motivates
the importance of a sequential decision-making approach.

3. Markov Decision Processes for Chronic Diseases

We begin by describing the standard elements of an MDP for chronic disease including decision
epochs, the time horizon, a finite set of health states, a finite set of decisions about health
interventions, state transition probabilities, and a reward function. We introduce generic

Figure 1. An example of the stages of care and the decisions and resources at each stage for prostate
cancer beginning with a screening of a healthy population through diagnosis, treatment, and post-
treatment monitoring and recurrence.
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definitions throughout this section to develop a model that could fit many contexts. In
Section 4, we provide specific examples in the context of treatment for diabetes and sur-
veillance of prostate cancer to illustrate the use of these models for optimizing medical decision
making. The following are the standard elements of an MDP formulation:

e Decision epochs: Decisions are made at each epoch in a discrete set of decision epochs,
which are fixed and predetermined time points over the finite horizon at which decisions are
made. The selected time interval between decision epochs for chronic disease should be at least
as frequent as a typical clinical decision occurs in practice. In the case of type 2 diabetes—an
example considered later in this tutorial-—decisions about which medications to initiate are
made every six months as recommended by the American Diabetes Association [4]. If the
decisions themselves include whether and when to perform tests, to collect additional in-
formation, then more frequent intervals may be appropriate to avoid biasing the decisions
toward longer intervals.

e Time horizon: The time horizon in an MDP may be finite or infinite. An infinite time
horizon must include a discount factor on future rewards to guarantee the total rewards are
bounded. A discount factor may also be used in a finite horizon MDP, but it is not
a requirement for a well-formulated model. Although the disease life cycle progresses over
a finite horizon, some researchers elect an infinite-horizon approach when the time between
decision epochs is short relative to the length of the time horizon. Another deciding factor for
choosing an infinite-horizon model is whether stationary transition probabilities and rewards
are reasonable assumptions. For example, some diseases are highly nonstationary because age
is a risk factor (e.g., cardiovascular disease risk increases exponentially over time), whereas
others may be reasonably approximated by a stationary MDP.

e States: At each decision epoch, the system described by an MDP model is in a certain
state. The choice of states is one of the most important decisions when formulating an MDP
model. The choice should be based on the minimal information required for clinical decision
making at a given decision epoch. The specific definition depends on the particular disease and
may include risk factors defining the patient’s health status, demographic information, and the
relevant medical history. For example, a model for prevention of cardiovascular disease might
include cholesterol, blood pressure, and other factors relevant to predicting cardiovascular
disease outcomes as established in the medical literature (e.g., gender, smoking status, pre-
viously initiated medications). In some cases, the dimensionality of the state may be reduced
by using an established aggregate risk score. For example, models for liver transplant decisions
have used the discrete Mayo End-stage Liver Disease (MELD) score, which is a single score
based on multiple risk factors for liver disease (Alagoz et al. [2]). In contexts where the state is
defined by a continuous risk factor (e.g., cholesterol, blood pressure, blood sugar), it is common
to discretize the state space to obtain a tractable approximation of the continuous model.
A finer discretization may be more representative of the true continuous state space, but it also
increases the size of the state space and therefore the computation required to solve the model.
Furthermore, a finer discretization decreases the number of observed transitions among states
in a longitudinal data set, introducing more sampling error into the estimates of the transition
probabilities. Regnier and Shechter [61] provide a discussion of the trade-off between the
model error, caused by coarse discretization of states, and the sampling error as a result of
a finer discretization. In addition to model accuracy, it may be necessary to consider clinically
relevant thresholds for defining discrete states. This consideration is important if the MDP
model will be compared to clinical guidelines.

e Decisions: The decisions (often referred to as actions) in an MDP may include many
types of health interventions such as oral medications (e.g., statins for cholesterol reduction),
injectable medications (e.g., insulin for glucose control), and diagnostic tests for disease
screening or surveillance (e.g., cluster of differentiation 4 (CD4) count for HIV). Diagnostic
tests could also include molecular biomarkers implemented as blood tests, urine tests, imaging
tests such as MRIs, CT scans, or other means of assessing the risk of a latent disease such as
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cancer. In the model we present in this section, we consider a finite set of actions that are binary
decisions (e.g., initiate a nominal dose of medication, refer a patient for an MRI, discontinue
treatment). Continuous decisions do arise and may be appropriate in some cases (e.g., selecting
a medication dose), but often they are reasonably modeled as a discrete decision because
there are typically a discrete set of options that are commonly used in practice (e.g., low,
medium, or high dose of medication). The term policy is used to define a mapping of MDP
states to actions. Thus, the goal of solving an MDP is one of finding the optimal policy, which
we discuss in Section 3.1.

e Transition probabilities: Conditional probabilities define the random change in state from
one decision epoch to the next. Under the Markov assumption of an MDP, the probability of
transitioning to a given state in the next decision epoch depends only on the current state. The
transition probabilities describing the progression of the disease constitute a model known as
a natural history model of the disease. Creating such models is challenging because medical
records contain data about patients who have been treated. Therefore, to estimate transition
probabilities among “untreated” states, it is necessary to transform the longitudinal data by
removing the estimated effect of treatment on the risk factors (e.g., oral medications for
diabetes such as metformin, lower blood sugar, change in the natural course of the disease).

e Rewards: At each decision epoch, a reward is received that may depend on the state,
action, and decision epoch (the term “reward” is commonly used, but it may also refer to a cost
or penalty of some time in the context of a minimization problem). The rewards in a chronic
disease MDP model may be associated with health or economic implications (e.g., costs). The
specific choice of reward may differ depending on whether the decision maker is a patient,
physician, or third-party payer (e.g., BlueCross BlueShield, Medicare). Health interventions
are intended to offer some reward to the patient, such as a potentially longer life or improved
quality of life. But these benefits come at a “cost” to the patient, whether it is a reduction in
quality of life, caused by the side effects of a health intervention, or a financial cost such as
medication co-pays or hospital expenses. Health services researchers typically use quality-
adjusted life years (QALYSs) to quantify the quality of a year of life. A QALY of 1 represents
a patient in perfect health with no adverse impact from the disease and no side effects as
aresult of health interventions. As the patient’s quality of life decreases—whether from health
intervention side effects or disablement from a disease—the patient’s expected QALY will
decrease. The adjustments for reduced health as a result of symptoms of a disease or side effects
of interventions are called disutilities, which are numeric estimates of harm to quality of life on
a scale of 0 to 1. They are often estimated by survey studies that elicit patient estimates of
harm associated with health outcomes using survey methods (see Torrance [74] for a review of
standard methods including standard gamble and time trade-off). Some MDP models are only
concerned with maximizing a patient’s QALYs. Other models take a societal perspective and
attempt to balance the health benefits of treatment with the corresponding monetary costs of
health interventions. A common approach to balance competing objectives uses a willingness-
to-pay factor, which assigns a monetary value to a QALY In this case all the rewards are in
dollars, and the net monetary benefit (NMB) is an often-used criterion that is the difference
between the reward for QALYs and the cost for health interventions. Commonly used values
for the willingness-to-pay factor are $50,000 and $100,000 per QALY but the most appro-
priate value to use is often debated (Rascati [60]).

3.1. MDP Model Formulation

In this section, we give a generic mathematical formulation of an MDP for a chronic disease.
This formulation is intended to convey a general conceptual understanding of MPDs for
chronic diseases, but any specific application is likely to require some modifications to tailor the
model. Figure 2 illustrates the sequential decision-making process over a finite horizon using
the notation defined in this section. Decisions are revisited periodically over the set of de-
cision epochs: T ={1,2,..., T}. The disease states are a combination of disease status and
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Figure 2. Illustration of the sequential decision-making process for an MDP, including actions, state
transitions, and rewards, from the start to end of the finite-time horizon.

Actions a, az as ar_q
States 5 5] =— S, Sy =— Sg Sp_g=——>Sr_1 ST—1==——> ST
Rewards (51, Ry, ay) 72 (52, ha, @) Frea(Sr—1 hrey ar—1)  Trisp hr)

intervention history. The intervention history is included as part of the state definition because
health interventions often have long-term, lasting effects and thus must be incorporated into
the state definition to retain the Markov property. The set of disease status states is
F={51,95,...,59},and the complete set of possible health intervention histories at epoch ¢
is#,={H,Hy, ..., H 19| }+. The disease status set and the health intervention history set are
indexed at each epoch ¢ by s; € ¥ and h; € ¥, respectively. Most MDP models also have at
least one absorbing state, @, which we assume is defined in the set of health status states, &.
Depending on the disease context, % could represent major complications of the disease, death,
or some other cause of departure from the decision process (e.g., organ transplant).

At each decision epoch ¢, the action, a;, is selected from a set of available interventions,
Ay (s¢, hy), that may depend on the patient’s health status, s;, and health intervention history,
hi. There are many possible reasons that the current action a; would depend on the patient’s
health or intervention history. For example, as a patient’s health status deteriorates, certain
interventions may be too risky or may be unlikely to yield a benefit to a patient (e.g., a patient
with metastatic cancer may not benefit from surgery to remove a tumor). There may also be
conflicts between certain interventions (e.g., dangerous interactions between prescribed
medications). In some cases, there may be a clinical reason why a certain order or partial order
of health interventions is appropriate (e.g., less invasive tests are often used before more
invasive tests). Because of the potential dependency between past interventions and current
actions, the set of health intervention histories is updated at each epoch via the following set
operation: #; =¥, 1 x {a;}. Because of the constraints on interventions, it is sometimes the
case that the set of available interventions (s, h;) is nonincreasing over time: s, (s, h1) 2
Ao (89, ho) 2247 1(s7_1,hr_1). This relationship reflects the fact that the available
options tend to decrease over time as a patient ages and progresses to later stages of a disease.

At each decision epoch ¢, and for each state pair (s, i), the decision maker selects an action
at € A(st, hy) and receives a reward of 74(s, hy, a;). On the basis of the above definition of states
and actions, there are two types of probabilities in this MDP: (1) transition probabilities
among (transient) disease and health intervention states and (2) transitions to the absorbing
state(s). The complete set of transition probabilities is summarized in the following equation:

pt(5t+1|5t7 hy, at)
(1 —pe(D|st, b, ar)) - pe(Sesa|se, hey ar)  if s, 5141 € P\{D}, by € K,

) p(Ds, b, ay) if s;01 = Dand s, € P\{D}, by € K,
B 1 ifSt:SH_l:@,hf,E%t
0 otherwise,

where p,(D|si, hi, a;) is the probability of entering the absorbing state. This definition im-
plicitly assumes that transitions to the absorbing state, @, and the transient states, ¥ x #;1,
at epoch ¢ 4 1 are conditionally independent; that is, their dependence is described entirely by
the current state pair (s;, h;) and action a;.

RIGHTSE LI MN iy



Denton: Optimization of Sequential Decision Making for Chronic Diseases
324 Tutorials in Operations Research, (©) 2018 INFORMS

From the above definitions, the goal is to find a policy that maximizes the expected total
discounted rewards over the time horizon, as follows:

max{]E Z A (s, hey m(se he)) + AT Trp(sy)] ] (1)

where the expectation is taken with respect to the stochastic process induced by policy 7,
which is a vector of decision rules, which in turn are vectors of optimal actions for each epoch ¢.
We denote a decision rule by vector J;‘ = (a;(s1, M), ..., a;(s19, h%))). The set of optimal
decision rules at each epoch defines the optimal policy 7* = (d;, d}, ..., d} ;). The set of all
possible policies is denoted by IT in Equation (1). The optimal policy defines the complete set
of actions for every possible decision epoch and health state combination.

The optimal policy for the problem defined by Equation (1) can be found by solving the
optimality equations for a stochastic dynamic program (also known as Bellman’s equations),
which are written as follows:

vi(st, ) = anax {rise by ) + X D plsiaalsi a)vipa(sin, b )}
! sl L Vs €S

teI\{T},st€d, b€,

vr(sr, hr) = re(sr,hr), sr€F, hre¥r,

where v;(s;, hy) is the expected value to go if the optimal action is followed in each decision
epoch starting at epoch ¢, when the patient is in health status state s; and intervention history
ht, and future rewards are discounted by A€ (0,1]. The fact that the above optimality
equations provide an optimal policy is easily proven by induction (see section 4.3 of Puterman
[59] for a proof). Discounting is common in MDPs to account for the time value of rewards. In
healthcare studies, an annual discount factor of 0.97 is commonly used when the criterion is
amonetary cost to account for the time value of money. Discounting of QALY s is also common
in the context of cost-effectiveness analysis that considers the ratio of the change in cost to the
change in QALYs for a health intervention (known as the incremental cost-effectiveness
ratio). A discussion of discount factors can be found in Gold [34]. The value function at epoch
T is a boundary condition determined by the end-of-horizon reward, ry(sr, hr).

The above MDP formulation has similarities to many MDPs proposed in the literature on
medical decision making for chronic diseases, but there are also some notable extensions that
have received attention. For example, semi-Markov decision processes allow for uncertainty in
the time between state transitions by employing a continuous time approach that allows for
a probability distribution over the amount of time spent in a particular state (Serfozo [64]).
Chou et al. [18] provide an example of the use of a semi-Markov process for optimizing the time
to initiate medical treatment. Factored MDPs recognize that some problems have multiple
independent variables that define the state space, a characteristic that can be exploited to
some computational advantage (Degris and Sigaud [23]). Another significant extension is to
consider the addition of constraints (e.g., constraints on total cost over multiple decision
epochs), which leads to challenges in developing algorithms because many such problems no
longer retain the attractive decomposable structure of a dynamic program (Altman [3]).
Finally, the above formulation assumes that the decision maker is risk neutral. Approaches to
generalize MDPs to consider risk aversion include the use of utility functions (Howard and
Matheson [39]), percentile risk measures (Filar et al. [28]), and more recent risk measures such
as conditional value at risk (Chow and Ghavamzadeh [19]).

3.2. Partially Observable MDP Model Formulations

POMDPs extend MDPs to contexts in which perfect information about the health state of the
patient is not available. We emphasize this particular extension among the many alternatives
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because it applies to the many diseases that have an asymptomatic latent period (e.g., many
cancers go undetected because of an absence of symptoms). Examples of the use of POMDPs
for chronic diseases include breast cancer (Ayer et al. [78], Maillart [49]), colorectal cancer
(Erenay et al. [27]), prostate cancer (Zhang et al. [81]), and heart disease (Hauskrecht and
Fraser [36]), to name a few. For these types of diseases, screening and diagnostic tests often
provide useful information, but false-positive and false-negative test results prevent the true
health state from being known with certainty. POMDPs assume that the decision maker does
not know the exact health state of the patient. Instead, the health state is replaced by a belief
state that defines a probability distribution over the finite set of disease states.

Next, we describe the most important elements of POMDPs. To the extent possible, we use
the same notation as the previous sections. For a more thorough description of POMDPS in
general, the reader is referred to reviews by Monahan [52] and Lovejoy [48]. A tutorial by
Cassandra provides an excellent nontechnical introduction to POMDPs (POMDP . org) as well
as references to more recently developed methods.

e Core states and observations: In a POMDP, the state space is defined by a set of core
states (also known as latent states or hidden states) and an observation process (also referred to
as a message process or an emission process). Figure 3 illustrates this sequential state transition,
observation, and decision process. For chronic diseases, the core states correspond to the true
health of a patient, such as is cancer-free, has noninvasive cancer, has invasive cancer, or is in
treatment. As in the previous section, we let s; index the health status states in the set ¥ (note
that in this section, we suppress consideration of intervention histories, #;, ..., #7, for sim-
plicity). To a clinician, some of these states are not directly observable, so the true health state of
the patient is not known with certainty. The observation process corresponds to observable test
results (e.g., a mammogram for breast cancer, a fecal occult blood test for colorectal cancer,
imaging for retinopathy). The core state process and the observation process are tied together
probabilistically through an information matriz. Each row of the information matrix corresponds
to a core state, and each column entry is the probability of a particular observation conditional on
the core state. The relationship between the core and observation processes and the observed test
results can be used to estimate the belief vector sequentially via Bayesian updating.

e Decisions: To decide on the action set for a POMDP, one must identify which screen-
ing or treatment options to consider. In the context of POMDPs, it is often the case that
actions involved the choice of whether and when to use screening or diagnostic tests that

Figure 3. Illustration of the sequential decision-making process for a POMDP, including actions,
observations o, core state transitions, and rewards, from the start to the end of the finite-time horizon.
Observations are emitted from the system before the state transition in each decision epoch. The ob-
servations and prior belief b; are used to update the belief vector b,,1. Actions are based on the belief
vector at each decision epoch.
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provide information about the likelihood the patient is in a particular health state. Decisions
about which actions to consider also have implications on the computational difficulty because
as the number of actions increases, the computational difficulty of finding optimal policies
increases exponentially (Monohan [52]).

® Bayesian updating and optimality equations: At each decision epoch ¢, an action is se-
lected. The observations that follow inform the next choice of action at epoch t 41 through
Bayesian updating of the belief vector. The belief vector at epoch t is denoted by Zt, and it has
elements, b, 5, that denote the probability that the patient is in core state s, € ¥ at epoch ¢. The
information matriz has elements, denoted by g¢;(o|s:, a;), which define the probability of
observing outcome o; € O, where O is a finite set of possible observations (e.g., biomarker test
results based on a discrete set of clinically relevant ranges), given the core state of the patient is
s; and action a; was chosen. The belief vector is updated via Bayesian updating at the start of
epoch t+1, immediately after observing o; at the end of epoch ¢, using Bayes’ rule as follows:

b . Zstgybt,sipt(3t+1|5t7 at)Qt(0t|3t, Clt) (2)
t+1,541 —
b Zst_’(gwlegj’bt,sﬁpt(StJrl |5t ar) qi( o4, ar)’

where the numerator is the probability of transition to state s,;; and observing o;, and the de-
nominator is the probability of observing o; taken over all possible states to which the patient may
have transitioned.

® Rewards: At each decision epoch, t, a reward is received that depends on the current
information, including the core state, observation, and action. In this partially observable
context, there are multiple alternatives for defining this dependency. We choose the following
form of the rewards:

Tt(gt, at) = th,sﬂ“t(st, a), (3)

s€S

which is the expectation of rewards defined on the core state s; and action a;. Given the above
definitions, the resulting optimality equations are as follows:

'Ut(gt) = max {ﬁ:(gt, ar) + A Z bs,Di(se4156: ar) @rar (01481, at)thrl(gtJrl)}

u;e&ﬂ(z,) $1€S,8141€F,0141€0

for t € T\{ T} and a terminal reward vector vy (br) = rp(br), where rp(by) is the expected reward
to go beyond the end of the time horizon as a function of the belief state. The equations look similar
to the standard MDP described in Section 3.1; however, approaches for solving these problems, as
we shall see in Section 3.3, are quite different because Bt is continuous.

In a POMDP model, the decision maker can take actions to gain information about the state of
the system. For example, the problem of optimizing screening decisions is modeled as a POMDP
where the actions at each epoch are the different choices of screening tests available, including the
option not to screen. Performing a screening test may not change the natural progression of the
disease, but it can provide the decision maker with valuable information about the true health state
of the patient, which in turn may be used to decide whether to do more invasive testing such as
biopsy or radiologic imaging. Many POMDPs used in medical applications deal with decisions about
whether and when to collect information to learn about the health status of patients over time.

3.3. MDP and POMDP Solution Methods

The appropriate method for solving an MDP depends on whether it is an infinite-horizon or
finite-horizon model and the size of the state and action spaces. Methods such as policy it-
eration, value iteration, and linear programming have been used to solve infinite-horizon
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problems, whereas backward induction is typically used to solve finite-horizon problems based
on an end-of-horizon boundary condition (see Algorithm 1 for a pseudocode description of this
method). The general references given at the end of Section 1 describe these methods in detail.

Algorithm 1 (Backward Induction Algorithm for Finite-Horizon MDP)
1: Input: MDP data elements: decision epochs, states, actions, transition probability matrix,
rewards, discount factor

2: Boundary Condition: vr(sr, hr) = rp(st, hr), for all sy €S, hr e Hp
3: Backward Induction:
4:for t=T—-1tol do
5. for all s,€¥ and h; € #; do
vi(s1,he) = maX{Tt st hey ar) + )\Zpt St+1 | 8t he-ar) veer (se41, b )}
a;(si,l) = arg max{rt(st, hy, az) + )\pr Str1 | 8ty hear) Ve (Se41, hes1) }
sed
6: end for
7: end for

8: Return: Optimal Policy

A common problem with practical MDP formulations is that they are subject to the curse of
dimensionality because the size of the state space grows exponentially with the number of
health risk factors defining the patient’s health state over time. Approximation algorithms can
be used to circumvent this problem. There has been a large amount of research on approximate
dynamic programming in recent years. These approaches tend to be highly context dependent,
and with a few notable exceptions, very little work has been done in the context of chronic
diseases. One example of the use of approximate dynamic programming arises in the context of
treatment decisions for infertility (He et al. [37]). Books by Bertsekas [9] and Powell [58]
provide a thorough review of approximation methods for MDPs.

Many MDP models for chronic diseases have structural properties that can help explain the
optimal policies obtained from solving MDPs and, in some cases, can be exploited for computational
gains. One such property is the increasing failure rate (IFR) property of transition probability
matrices. In the context of chronic diseases, the IFR property means that there is an ordering of
states (e.g., least to most healthy) such that the worse the health status of the patient is, the more
likely that the health status will become even worse. Mathematically, it is defined as follows:

Definition. A transition probability matrix at epoch t has the IFR property if Z
(St+1]8t, ar) is nondecreasing in s; for all k€ ¥ and a; € A.

9r+1—]~7pf

Usually, the state ordering naturally follows some measure of the severity of the chronic
disease (e.g., low to high risk of a disease complication). For certain problems, the IFR
property together with some additional (and generally nonrestrictive) conditions guarantee an
optimal threshold policy (see chapter 4 of Puterman [59] for a thorough discussion of this
topic). These conditions have been used, for example, in the context of HIV (Shechter et al.
[65]), liver disease (Alagoz et al. [2]), and type 2 diabetes (Kurt [44]) to prove the existence of
an optimal control-limit policy under an ordering of states. A control-limit policy is one in
which one action is optimal for all states below a certain threshold state (e.g., wait to
transplant if the MELD score is below 25) and another action is optimal for all states at or
above a certain value (e.g., transplant if the MELD score is at or above 25). In addition to
providing insight into optimal policies for MDPs, proving the existence of a control-limit policy
can also decrease the computational effort required to solve an MDP model because the value
function does not need to be explicitly calculated for every state—action pair.

POMDPs are generally much more challenging to solve than MDPs. Whereas MDPs can
be solved in polynomial time, POMDPs have time complexity that grows exponentially in
the number of observations and actions; moreover, the dimension of the belief vector
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increases with the number of core states. Early methodological studies of POMDPs focused
on exact methods that exploit the fact that the optimal value function for a POMDP is
convex, and in the finite-horizon case, it is piecewise linear and expressible using a finite set
of supporting hyperplanes known as a-vectors (Smallwood and Sondik [68]). The first exact
method was the single-pass method, given in Algorithm 2, which, similar to Algorithm 1,
uses backward recursion starting with a boundary condition in epoch 7. In contrast to
Algorithm 1, however, Algorithm 2 exploits the following piecewise linear convex property
of the optimal value function:

Ut(gt) = {IlaX {_b't . &t}, (4)

aeQy

where Q, is a finite set of |¥|-dimensional a-vectors. Each a-vector has a corresponding action;
therefore, Equation (4) encodes the optimal action at each epoch ¢ and belief point bt Atepoch t,
Q; can be recursively generated using the optimality equations:

vt(gt) = max {gt -T(ay) + )\Z max {EHI '&t+1}pt(0t|gt; at)}; (5)

a €, Ore@aHleQHl

where the first term in the maximization is the dot product of the rewards in Equation (3) (i.e.,
7i(a;) is an F-dimensional vector of rewards for all states), s; € ¥, and p,(o | by, ay) is the
probability of observing o; given the belief state bt and action a;. Substituting in Equation (2),
this can be rewritten as follows:

b)) = b A A
?Jt( t) gﬁf{ t( at + Z max z;p%(ot|st+laat)pt(5t+1|5t,at)at+l>} (6)

ﬂz+| SO

for all B, in the unit simplex and all epochs t € F\{ T}, and the boundary condition is
UT(ZT) = ZT . T”T

for all ET in the unit simplex. The vector 77 has elements corresponding to the end-of-horizon
reward for each state s; € . The belief vector has been factored out in Equation (6) to separate
the a-vector from the belief vector. Given the above properties, the problem of solving
a POMDP is equivalent to finding the a-vector set that describes v;() at each epoch t € J. The
single-pass algorithm, mentioned previously, constructs 2; from the previous a-vector set,
Q4.1, as follows:

Q= {5216|52t =Fu(a) + A Y aqiodlsier, an)pi(sialsi, a)di | Vo € sy, Vai 69t+1}~

0,€0 5,€¥

As defined, €, is the finite set of all possible a-vectors; however, there are typically a large
number of vectors that are unnecessary because one or more other vectors dominate them;
that is, there is no belief point at which the given vector is necessary to define the epigraph of
the optimal value function. An a-vector o € €); can be eliminated through a process called
pruning that involves solving the following linear program, LP(«y,$2;), for every alpha

vector ay:
min z=y— th,s,at(s)
sed
. / —/ —
subject to thwat(st) <y, Ya, e Q\{a,},
s €S (7)
D by =1,

si€S

Ogbtvs,gl,VStEH’.
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If the optimal solution to the linear program, LP(ay, §2;), in Equation (7) is such that z* >0,
then @; is nondominated; otherwise, it can be removed without altering the optimal value
function or policy. Algorithm 2 provides pseudocode for generating the minimal set of
nondominated alpha vectors at each decision epoch from which the optimal policy for any
given belief state, Bt, can be computed using Equation (5).

Algorithm 2 conveys a conceptual understanding of an exact approach for POMDPs;
however, it is suitable only for very small POMDPs. Many authors have built on this early
approach for solving POMDPs by developing more efficient ways of pruning unnecessary
a-vectors, including incremental pruning (Cassandra et al. [12]) and the witness method
(Litman [46]). Even these more efficient exact methods are generally limited to small
POMDPs. Thus, approximation methods have been the focus for practical POMDPs, such as
those that arise in the context of chronic diseases. Perhaps the most well-known approxi-
mation method for POMDPs is the fized-finite-grid algorithm proposed in Eckles [25]. This
approach approximates the continuous belief space with a finite set of belief points, resulting in
a completely observable MDP that approximates the POMDP. Many enhancements, in-
cluding variable grid-based approaches, have built on this early idea. The reader is referred to
Lovejoy [48] for a survey of approximation methods including finite-grid based approxima-
tions. A more general survey of theory and methods for solving POMDPs, including exact and
approximation methods, can be found in Kaelbling et al. [41].

Algorithm 2 (Single-Pass Algorithm for Finite-Horizon POMDP)
Input: POMDP elements: decision epochs, states, actions, transition probability matrix,
information matrix, rewards, discount factor
Boundary Condition: Q7 = {7}

Backward Induction:
for t=T—1tol do
Generate €,
for all a; €, do
if LP(Oét, Qf) >0 then Qt — Qt\{at}
end if
end for
end for
Return: Minimal a-vector set €, for all t€ 7.

3.4. Software for Solving MDPs and POMDPs

There are numerous software implementations of algorithms for solving MDPs and POMDPs.
We provide a few examples here, although this is not intended to be a comprehensive list of all
available software. For MDPs, the MDPToolbox package, which is available for many en-
vironments including MATLAB, R, and Python, provides solvers for discrete-time MDPs
including backward recursion for finite-horizon problems and methods such as value iteration
policy iteration for infinite-horizon problems (Chades et al. [15]). The JuliaPOMDP package
includes implementations of methods for MDPs and some algorithms for POMDPs in the Julia
programming language. Poupart et al. [57] provide source code for approximations to
POMDPs with optimality gaps. The tutorial on POMDPs (POMDP . org) provides source code
for implementations of some of the more popular methods.

4. Data-Driven Model Parameterization for MDPs and POMDPs

With the appropriate definitions of models for sequential decision making established, we now
discuss the issue of how to estimate model parameters using longitudinal data from electronic
health records and other sources. We use two examples to illustrate methods for estimating
natural history models: treatment for type 2 diabetes and surveillance of patients with prostate
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cancer. For each example, we provide a detailed description of how the model parameters were
estimated, and we present results for the optimal policies obtained from the models.

4.1. Model Parameterization for MDPs

The two main categories of data for MDPs are rewards and transition probabilities. The choice
of reward parameters depends on the criteria to be considered, which can vary significantly
depending on the decision maker’s perspective. Common examples include expected life span,
QALYs, the risk of a major health complication, and the cost of health services. As discussed in
Section 3, QALYs refine the expected life span measure to account for the effect of disease
outcomes and side effects of interventions using disutilities (also known as wutility decrements).
Disutilities are numerical estimates used to adjust a year of perfect health quantitatively as
a result of the impact of disease or health intervention side effects. These estimates are often
drawn from the health services research literature based on survey studies of patients to elicit
disutility estimates. In many cases no disutility estimates are available, and one must rely on
expert opinion or find estimates of disutilities for similar interventions. For example, the
disutility associated with one procedure (e.g., cardiac catheterization) may serve as a plausible
estimate for another (e.g., endoscopy). Disutilities are often included in sensitivity analysis
because of the limited availability of data from which to estimate them and because the
optimal policy for an MDP is frequently sensitive to the choice of these parameters.

When transition probabilities are estimated using longitudinal data, the estimates are
highly dependent on the definition of the states that define the Markov chain. Small numbers
of states often lead to dense transition probability matrices for which good point estimates can
be obtained (e.g., categorizing blood pressure into two states, low and high); however, the
small number of states means that the classification of alternative disease states is coarse, and
the accuracy of the model may be poor. Alternatively, a large number of states may be used to
boost model accuracy; however, this comes at the expense of a larger number of transition
probabilities to be estimated, which increases the statistical error in the model parameters. In
general, the choice of state must carefully weigh clinical expertise, computational consider-
ations, and constraints caused by the limited availability of sample data for model estimation.

4.1.1. Example: Treatment for Type 2 Diabetes. We provide an example of esti-
mation of a transition probability matrix in the context of type 2 diabetes where the states are
defined by HbAlc, a commonly used biomarker for estimating long-term blood sugar exposure
based on the percentage of blood cells with glucose attached. HbAlc is measured by a blood
test that is recommended every three months by the American Diabetes Association. HbAlcis
an important risk factor for patients with diabetes because of the potential for high blood sugar
to lead to complications including kidney failure, blindness, and limb amputation. Complete
details related to this example can be found in Zhang et al. [82].

Five classes of glucose-lowering medications that are commonly used to control HbAlc were
considered: metformin, sulfonylurea, dipeptidyl peptidase 4 (DPP-IV) inhibitors, glucagon-
like peptide-1 (GLP-1) agonists, and insulin. Insulin is normally the last line of treatment
because of the quality of life impact of having daily injections. In our model, we assumed that
once insulin was initiated, HbAlc was controlled at a physician-recommended level of 7%. We
also assumed that medications other than insulin had an additive effect in reducing HbAlc.

To estimate the three-month HbAlc transition probabilities, we used anonymized labo-
ratory and pharmacy claims data as described in Zhang et al. [82]. This data set included
longitudinal data for HbAlc tests over a multiyear time horizon and pharmacy claims data
that provided the frequency and amount of medication refills for all diabetes medications. We
identified 37,501 eligible patients meeting standard criteria for having type 2 diabetes. For
these patients, we selected all pairs of records such that the period between tests was between
2.5 and 3.5 months, and the patient was not on insulin during that period. This selection
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resulted in 30,249 pairs (multiple pairs permitted per patient). We assumed transition
probabilities are stationary over time.

For each medication, we selected patients who had at least one HbAlc measurement within
three months before and after initiation of the medication, and who were treated with this
medication for at least three consecutive months. For each medication, m =1,...,5, we
calculated the pretreatment HbAlc and the posttreatment HbAlc for all selected patients. We
used the mean change in HbAlc observations during the three-month intervals before and
after initiation of medication m to estimate the treatment effect in terms of proportional
change in HbAlc, denoted by w(m). Next, we used the treatment effect and the observed
HbAlc value, denoted by A1¢! for patient i at epoch t,tto estimate the natural HbAlc values in
the absence of medication, which we denote by Alc;:

Alct

Ale =i
i 1—w(m)

Vi, t.

We subsequently discretized the continuous natural Alc values into 10 discrete states using
deciles of the empirical distribution to define the interval for each discrete state. For each
interval defined by the deciles, we computed the conditional mean and used it as the point
estimate of HbAlc for the state associated with the interval. For any two consecutive states, s
and ¢, we denote the total number of transitions from state s to state s as ng y. The maximum
likelihood estimate of the transition probability is estimated as follows:

/ ns,s’
p(s'|s) Sy VseF\{D},
where S is the set of HbAlc states in this example.

The above estimation procedure provides statistical estimates of the transition probabilities
among transient health states as described in Section 3. The transitions from health states to the
absorbing (disease complications including kidney failure, blindness, and amputation) state
were estimated using the United Kingdom Prospective Diabetes Study (UKPDS) outcomes
model (Stevens [71]). The UKPDS model is a well-known survival model that estimates the
probability of future complications based on established risk factors that include age, gender,
ethnicity, body mass index, blood pressure, cholesterol, and HbAlc. For this study, which
focused on HbA 1c control, all risk factors except HbA 1c were assumed to be constant over time.
Furthermore, the probability of death from other causes was estimated based on the Centers
for Disease Control and Prevention (CDC) mortality tables (Anderson and Smith [12]).

The reward function, r¢(s;, by, a;), was defined as follows:

025(1 - Dhypcr(st, af,)) (1 - DmCd(St7 hta at)), VSt S Ef\{gb}, ht S %t, a; € .Sﬁ,
, otherwise,

re(st, ey ag) = {
(8)

where 0.25 is the three-month length of the time interval (¢,¢+ 1] expressed in years,
DMPer (s, ay) is the disutility of daily hyperglycemia symptoms associate with high blood sugar
(e.g., headaches, fatigue, frequent urination) when the patient is in state s; and takes action a;
during epoch (t,t+1], and D™*d(s;, hy, a;) is the disutility of taking medications over time
interval (¢, ¢t +1] that were initiated at or before epoch ¢. If the patient is on more than one
medication, D™ (s;, hy, a;) is the sum of individual medication disutilities corresponding to
medication history up to epoch t, h;, and the most recent action a;.

The initial HbAlc state distributions at the first decision epoch, mean HbAlc values at
diagnosis, and HbAlc state transition probability matrices for men and women are shown in
Tables 1 and 2. As mentioned earlier, we considered three-month decision epochs. The time
horizon was assumed to begin at the median age of diagnosis of type 2 diabetes (55.2 for
women, 53.6 for men; CDC [13]) and ended at age 100 (for patients who survive to the end of
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Table 1. Glycosylated hemoglobin (HbAlc) used in the MDP model for women. The table includes the
HbA1c range definition at diagnosis, the mean natural HbA1lc values for each HbAlc state at diagnosis
(before initiating medication), the initial HbAlc distributions at diagnosis, and three-month HbAlc
transition probability matrices (TPMs) for women.

HbAlc state

1 2 3 4 5 6 7 8 9 10

HbAlc range <6 [6,6.5) [6.5,7) [7,7.5) [7.58) [8,85) [8.59) [9,9.5) [9.5,10) >10
Mean HbAlc 57 625 674 724 773 823 873 922 972 1173

value (%)
Initial HbAlc 0.0771 0.1543 0.2125 0.18 0.1105 0.0848 0.0502 0.035 0.0273 0.0683
distribution
TPM

HbAlc state 1 0.6379 0.3042 0.0481 0.0088 0.0010 0 0 0 0 0
HbAlc state 2 0.1717 0.5085 0.2692 0.0412 0.0064 0.0020 0 0 0 0.0010

HbAlc state 3 0.0299 0.1731 0.5213 0.2258 0.0374 0.0085 0.0018 0.0004 0.0011 0.0007
HbAlc state 4 0.0114 0.0538 0.2830 0.4167 0.1716 0.0446 0.0114 0.0029 0.0021 0.0025
HbAlc state 5 0.0048 0.0240 0.1055 0.2740 0.3329 0.1678 0.0568 0.0199 0.0055 0.0089
HbAlc state 6 0.0045 0.0116 0.0491 0.1438 0.2482 0.2768 0.1598 0.0661 0.0268 0.0134
HbAlc state 7 0.0015 0.0120 0.0316 0.0648 0.1687 0.2364 0.2184 0.1370 0.0768 0.0527
HbAlc state 8 0.0043 0.0065 0.0281 0.0562 0.0864 0.1533 0.1879 0.1965 0.1555 0.1253
HbAlc state 9 0 0.0166 0.0194 0.0332 0.0831 0.1357 0.1662 0.1717 0.1828 0.1911
HbAlc state 10 0.0078 0.0111 0.0277 0.0532 0.0831 0.0920 0.0854 0.0976 0.1042 0.4379

the horizon), after which we assumed the same course of treatment for the remainder of the
patient’s life. We chose age 100 for two reasons: first, because the average life expectancy after
100 years old is only 2.24 years for women and 2.05 years for men, as reported in Anderson and
Smith [12], and second, because the probability of having no macro- or microvascular event or
death occur until age 100 is very low. The discount factor A was chosen to be A =1 to avoid
discounting life years. A complete list of the remaining model input sources can be found in Table 3.

Table 2. Glycosylated hemoglobin (HbAlc) used in the MDP model for men. The table includes the
HbAlc range definition at diagnosis, the mean natural HbAlc values for each HbA1c state at diagnosis
(before initiating medication), the initial HbAlc distributions at diagnosis, and three-month HbAlc
transition probability matrices (TPMs) for men.

HbAlc state

1 2 3 4 5 6 7 8 9 10
HbAlc range <6 [6,6.5) [6.5,7) [7,7.5) [7.5,8) [8,8.5) [8.5,9) [9,9.5) [9.5,10) >10
Mean HbAlce 5.69 6.25 6.73 7.24 7.74 8.24 8.74 9.21 9.73 11.59
value (%)
Initial HbAlc 0.0694 0.1388 0.1968 0.1626 0.1138 0.0919 0.0619 0.0424 0.0328 0.0896
distribution
TPM

HbAlc state 1 0.6245 0.2885 0.0685 0.0093 0.0034 0.0025 0.0008 0.0008 0 0.0017
HbAlc state 2 0.1574 0.4949 0.2953 0.0402 0.0072 0.0038 0.0004 0 0.0004  0.0004
HbAlc state 3 0.0349 0.2061 0.4715 0.2279 0.0441 0.0078 0.0024 0.0012 0.0024 0.0018
HbAlc state 4  0.0130 0.0592 0.2462 0.4014 0.1971 0.0549 0.0166 0.0043 0.0029 0.0043
HbAlc state 5 0.0098 0.0237 0.1058 0.2606 0.3029 0.1852 0.0686 0.0243 0.0083 0.0108
HbAlc state 6 0.0058 0.0134 0.0645 0.1335 0.2313 0.2888 0.1514 0.0550 0.0294 0.0268
HbAlc state 7 0.0104 0.0142 0.0455 0.0796 0.1308 0.2284 0.2351 0.1422 0.0645 0.0493
HbAlc state 8 0.0111 0.0249 0.0456 0.0526 0.0982 0.1674 0.1840 0.1646 0.1328 0.1189
HbAlcstate 9 0.0125 0.0233 0.0412 0.0376 0.0789 0.1057 0.1595 0.1792 0.1344 0.2276
HbAlc state 10 0.0098 0.0249 0.0537 0.0688 0.0629 0.0799 0.0911 0.0996 0.1134 0.3958
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Table 3. Sources of inputs for the type 2 diabetes model.

Model input Source

Probabilities among HbAlc states Claims data set with linked laboratory data (Zhang
et al. [82])

Probabilities of adverse events UKPDS outcome model (Clarke et al. [20])

Probability of death from other causes CDC mortality tables (Anderson and Smith [12])

End-of-horizon reward CDC life expectancy tables (Anderson and Smith [12])

Utility of medications Sinha et al. [67]

Consistent with clinical practice, we assumed the optimal policy for patients who are on
insulin is to continue using insulin for their remaining lifetime. Figure 4 shows the optimal
policies for patients who are not on insulin, including patients not on any medications, patients
on metformin only, patients on sulfonylurea only, and patients on metformin and sulfonylurea

Figure 4. The first six years of the optimal policy from diagnosis of diabetes for men who are not on
insulin, including patients not on any medications, patients on metformin only, and patients on met-
formin and sulfonylurea.
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together. The other medications considered, DPP-IV inhibitors and GLP-1 agonists, were not
part of the optimal policies. We found that the optimal policies are of control-limit type
although the HbAlc transition probability matrices do not satisfy the IFR property exactly.
The optimal sequence to initiate medications is the same for men and women, but the time to
initiate each medication is different. At the time of diagnosis when patients are not on any
medication, the optimal action for those patients with HbAlc less than 10% is to initiate
metformin and sulfonylurea together; for those patients with HbAlc >10%, the optimal action
is to initiate insulin immediately. All patients eventually start insulin as a result of the de-
terioration of glycemic control over time, as suggested by the IFR property being nearly
satisfied.

4.2. Model Parameterization for POMDPs

Diseases with latent stages have health states that are not directly observable and are best
represented by a hidden Markov model. The term “hidden” refers to the fact that the exact
health state of the patient is unknown, but observations provide information about the belief
the patient is in a given (hidden) core state. Thus, a hidden Markov model is a POMDP
without actions or rewards, so developing a hidden Markov model is an important step in
formulating a POMDP. To develop a hidden Markov model, it is necessary to estimate the
model parameters from observable covariates. This estimation is done using longitudinal data
for a population that has received screening tests or diagnostic tests that provide observations
that are informative about how likely the patient is to be in a certain health state at multiple
time points. In most contexts there is some guideline specifying a recommended starting age,
stopping age, and frequency of screening tests. However, it is often the case that observed data
deviate from recommended guidelines. This issue can be viewed as a missing data problem and
can be addressed using the expectation-maximization (EM) algorithm (Dempster et al. [24]).
The EM algorithm iteratively generates model estimates that in theory converge to
a maximum likelihood estimate of the hidden model parameters, which include the core state
transition probabilities P, information matrix (), and initial belief by, as illustrated in Figure 5.
In practice, missing data may be a source of bias because missingness in screening data can be
informative (e.g., such as when “sicker” patients receive more frequent screening). In some
cases, missing data points or time intervals between data points are informative and may be
included as observation variables in the model. We illustrate the major steps of the model
formulation with the following example.

4.2.1. Example: Active Surveillance of Low-Risk Prostate Cancer. Active sur-
veillance is commonly recommended for patients with low-risk prostate cancer, as defined by
tumor pathology using the Gleason score, a discrete score assigned by a pathologist that
differentiates prostate cancer based on the risk of metastases. Active surveillance involves

Figure 5. Illustration of the state transition and observation process for a patient with N observations
from the perspective of estimating the parameters for a hidden Markov model including the initial (prior)
belief by, state transition probability matrix P, and the information matrix Q.
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routine biopsies for patients to confirm whether their cancer continues to be low risk, or
whether it has progressed to high-risk cancer that should be treated. However, biopsies involve
sampling of the prostate using (typically 12) hollow-core needles, and therefore biopsies may
fail to identify the presence of a high-grade tumor as a result of sampling error. In this section,
we provide an example of a POMDP model for finding an optimal policy for when to refer
patients for biopsy. We parameterized the POMDP model in two stages. In the first stage, we
estimated the parameters of the hidden Markov model for the unobservable core states of the
POMDP. These parameters were computed using the Baum—Welch algorithm, a special case
of the EM algorithm, which we describe below. In the second model parameterization stage,
transition probabilities from the core states to observable states were estimated using data
based on a review of the literature on prostate cancer. The observable states represent
treatment, progression to metastatic cancer, and death from any cause. This second stage was
necessary because of the low rate of observations of these major events over the limited
(10-year) time frame of the longitudinal data set used to estimate the hidden Markov model.

In the context of active surveillance for prostate cancer, a hidden Markov model has core health
states defined by prognostic cancer grade groups based on Gleason score. The term “hidden” refers
to the fact that the exact health state of the patient is unknown in the absence of surgical removal
of the prostate, known as prostatectomy. Transition probabilities determine the probability of
progression from a low to a high-grade cancer state, which, if detected, is treated by surgery or
radiation therapy. We based the model on one-year time periods between state transitions, to be
consistent with the highest proposed frequency of biopsies in the literature, and because that was
the planned frequency of biopsies in the Johns Hopkins study. The data set was made up of 1,499
patients who initiated active surveillance. The cohort of patients was followed over a 10-year period.

We indexed annual decision epochs as t = 0,1, ..., T —1, where ¢t = 0 denotes the initial
year of diagnosis of a patient with low-risk prostate cancer, before the start of the decision
process, which begins at epoch t=1. The model state at epoch t is denoted by
s € ¥ =181, Su}, where S;, denotes patients with low-grade cancer and Sy denotes patients
with high-grade cancer. Because patients in the high-grade state do not return to the low-grade
state, the transition probability matrix is that of an absorbing Markov chain:

pP— p(5L|5L) p(SH|SL)
= 0 1 .

At ¢t = 0, patients begin active surveillance under the assumption that they are in state Sg;
however, because of a biopsy sampling error, they could be in state Sy. We let 50 = (bo.s,, bo.sy)
denote the initial belief vector of patients in states S;, and Sy at their first surveillance biopsy. The
model has observation o, € 0={0_, O, } at epoch t, where O_ denotes a biopsy observation that
indicates low-risk cancer and O, denotes a biopsy observation that indicates high-risk cancer.
However, biopsies are imperfect as a result of sampling error, and the following matrix denotes the
conditional probability of biopsy observations O_ and Oy:

Q= a0 151)  ¢(0+|SL)
90 |Sk)  q(O4|Sk) |

If a biopsy result is O., the patient exits the system and receives treatment according to
standard clinical protocols. Collectively, we denote the model parameters for the hidden Markov
model by L= (by, P, Q). Figure 5 illustrates the stochastic active surveillance process.

Algorithm 3 (Baum-Welch Algorithm for Hidden Markov Model Parameter Estimation)
1: Input: Initiate model parameter estimates 90,
2: Compute P(0|£") using Equation (9).
3: Compute ¥' using the update equations in (10).
4: Compute P(O|£") using Equation (9).
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5 k—1
6: while P(O|%") —P(0|$* ') > Tolerance do
7 v—uv+1
8 Compute " using the update equations in (10).
9:  Compute P(O|£").
10: end while

Maximum likelihood estimates of & were obtained using the Baum-Welch algorithm
(Algorithm 3). The Baum—Welch algorithm is an iterative algorithm that combines forward
and backward passes on a longitudinal observation sequence to find the choice of & that
maximizes the likelihood of observing the collection of sequences. In our application, we have
biopsy results for v =1, ..., N patients, where N = 1,499. Each patient v has an observation
sequence, O = {01 , 0<2 ), .. O(T)} which represents a patient’s biopsy results over T, time
periods. We denote the set of N observation sequences as O = {O L0 . oW )}. Thus, our
goal is to find the model & that maximizes

F(0]%)) = [TPO"]%). ©)

where we assume that observation sequences among patients are independent. To describe the
steps of the Baum—Welch algorithm, we denote elements of matrices P and @ as p(j|7) and

q(0l7), respectively, dropping the subscript ¢ because we assume the matrices are stationary.
We begin by defining the forward variable, o )( i), of the Baum-Welch algorithm as

ol (i) =P\, o, ..., o), 5 = Si|F),i=1,2,

where S} = S; and S = Sy, and o )( i) is the probability of observing the partial observation
sequence until time ¢ and being in state S; at time ¢, given the model &. Forward recursion is
used to efficiently solve for al” (i):

o)) = bosg(ol]i), i=1,2,v=1,...,N,

ol (j <Zat >q(o§1>1|j), 2<t<T,~1,j=1,2,v=1,...,N.
Next, we define the backward variable, ﬁgv)(i), as follows:

ﬁt”() (oiﬁl,o(tQQ,...,o(T’UI”i,st:S¢>,

which is the probability of the partial observation sequence from ¢t+1 to T, given the model &,
and given that patient v is 1n state S; at time t. Backward recursion can be used to efficiently
solve for ﬁt ( /) given that ﬁ T ( ;) = 1, and using the following recursive equations:

2
=N oGl (o) BN G), t=To—1,.. 1, i=12v=1,. N.

J=1

To define the iterative procedure that underlies the Baum—Welch algorithm, we let §(tv>(i, 7)
denote the probability of patient v being in state S; at epoch ¢, and then state S; at epoch ¢ +1,
given the model & and the observation sequence O):

o8 (D)p(j15) g (o 15) Bri1 ()
P(OV|%) ’

&0,5) = (s, = S, 5111 = Sj|%, 0) =
t=T,—1,...,1,i=1,2.

RIGHTSE LI MN iy



Denton: Optimization of Sequential Decision Making for Chronic Diseases
Tutorials in Operations Research, (©) 2018 INFORMS 337

The probability of patient v being in state S; at time ¢, given the model & and the observation
sequence O, can written as follows:

:ZEE‘})(Z,])’ i:17271/:17_“,N.
j=1

From the above definitions, we can write the following update formulas for the model pa-
rameters, which iteratively improve P(O|¥), as using the above forward and backward
equations, as outlined in Algorithm 3:

Zv 17, Zt 1 ft (7 ) a(llj) :Z” 1P1)E{Vt\0“) 0 }’VE )(]) _
MR IRON LAl )

(v)

:i% (1)

(10)

p(le) =

where P,=P(0"|¥) is used for conciseness. The update equation for p(j|i) calculates the
expected ratio of the number of transitions from state S; to state S; divided by the expected
number of transitions from state S;. The update equation for g(l| ]) calculates the expected
number of times a patient is in state S; and observes [ divided by the expected number of times
a patient is in state S;. Finally, the update equation for BUJ- is the expected proportion of times
a patient is in state S; at ¢t = 0.

The Baum-Welch algorithm (Algorithm 3) uses the above formulas to update the pa-
rameters of & iteratively. A proof of convergence for the Baum—Welch algorithm follows from
the convergence guarantees for the general EM algorithm; however, as with the EM algorithm,
convergence to a local optimum is possible because the maximization problem is not strictly
convex, and thus the limiting point for the sequential updates may be sensitive to the starting
point. For this reason, we conducted a sensitivity analysis using various starting points to
initiate the algorithm to confirm the robustness of the final solution. We also analyzed data
generated by sampling from known models with selected data elements missing at random to
confirm convergence of the Baum—Welch algorithm under these conditions.

Applying Algorithm 3 to the 1,499 patients who initiated active surveillance in the Johns
Hopkins study, with a tolerance of 10 ¢ for changes in the likelihood function from one iter-
ation to the next, we estimated the annual progression rate from low to high risk to be
p(SH|S1) = 0.04. The sensitivity and specificity of biopsy for high-risk cancer were estimated to
be ¢(0O+|Sy) = 0.61 and ¢(O_ |Sy,) = 0.986, respectively. Thus, biopsy identified patients with
high-risk disease approximately 61% of the time. For patients with low-risk disease, biopsies
correctly find no evidence of high-risk disease 99% of the time. Finally, the initial proportion
of patients misclassified at the time of diagnosis, as a result of inaccuracy in the biopsy
sampling process, was estimated to be b = (0.902,0.098). Therefore, about 10% of patients
who start active surveillance in this cohort have an undiagnosed high-risk disease that
warrants treatment.

In the second stage of model parameterization, we added three additional observable states:
treatment (S7), metastatic cancer (Sy), and death from any cause (Sp). The belief vector for
the POMDP for decision epoch tis Bt = (bi,s,, 1,545 b1.5y» .5y Di.5p)- The additional states were
added based on post hoc analysis using data from the literature because these endpoints were
not available in the active surveillance study data as a result of limited follow-up time. The
relevant parameters used to estimate the transition probabilities are as follows:

6;: annual other-cause mortality rate, S;/Sy/St/Su — Sp.
v,: annual metastasis rate with treatment, St — Sy.

v,: annual metastasis rate without treatment, Sy — Sy.
¢,: annual prostate death rate, Sy — Sp.

0;: annual progression rate, S, — Sy.
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The reward function is based on QALYs where the annual utility for a year of life in
unobservable states (Sg, Sy) is 1 and the annual utility for state Sp is 0. The remaining
parameters are the following:

up: annual utility for life after treatment (Sr).
uyr: annual utility for life with metastatic cancer (Sy).

The reward function also includes additional disutility in the year of treatment, x, and
disutility for biopsy, , in the year of the procedure. The time horizon for the POMDP assumed
diagnosis at age 50 (¢ = 1) and the last period was age 100 (7 = 51) with a terminal reward
equal to expected life span for patients alive in the last epoch. When a patient enters one of the
completely observable states St, Sy, Sp, there are no remaining actions, and the rewards are
computed via a Markov reward process with the following rewards:

Ry(S1) = ur + 6:Ri11(Sp) + (1= 60)v,Reea (Sur) + (1 —6:)(1 — ;) Ri1 (1),

Ry(Sm) = unr + (8, + (1 —68,)¢ ) Rui1(Sp) + (1 — ¢,) (1 — 6;) Resr (Sur),
Rt(SD> =

The boundary condition for the observable states is
Ry(St) = urlr, Rr(Su) = unlar, Rr(Sp) = 0,

where £ and £, are expected life spans for patients who are alive in the last period T'. All
parameter values associated with the second stage of parameterization of the POMDP model
and their sources are provided in Table 4.

The optimality equations for the POMDP model, which maximizes total expected QALY's,
can be expressed as follows:

-

v (by)

(b, W) + A(6:Ri1(Sp) + (1— 5t)’7?)?(5H)Rt+1(SM)
(1— )(1*%) (tD(SH)Ut+1(b?+1))> a=W

r1(b1, B) + A(P(O4 b1, B) (8:Ru41(Sp) + (1—80)7,b} (Su) Rusr (Sur)
(1—
(
(

Tt

+

= max

+H(1 =60 (1 7)) R (S7) — k) +
O [b1, B) (8:R1+1(Sp) + (1 —6.)%ib, (P)Ris1(Snr)

1—8) (1—3ib, (Su))vesr (bi11)), a =B,

where RT(bT) = 3.34, which is the expected life span of an individual at age 100 according to
U.S. life tables, rt(gt, W) =1, and Tt(gt, B) = 1— u. The vectors ?)‘?, ?)[, i’j are belief vectors
immediately after the observatlon @, —,+, respectively, where () indicates no biopsy was
performed. We denote by IP’(of|bt, B) the probability of observation o; in period ¢ given belief
vector b, and action B. Specifically,

P

+

q(O_|S)byg,
S)bis, + bis,

20 ~
bt,SH = bty5H7 b?:Sn = 1’ bt,SH = q(

Figure 6 shows the set of a-vectors obtained from solving the POMDP using Algorithm 2 for
the optimal value function at ¢t = 0, which represented expected quality-adjusted life span
for a man diagnosed with low-risk prostate cancer at age 50. Each a-vector is associated
with one of the two actions: biopsy or defer biopsy. The z axis represents the element of the
belief vector, b; g, corresponding to the patient being in the high-risk cancer state. At each point
on the z axis, there is an a-vector that corresponds to the optimal action for that belief point.
Thus, Figure 6 provides a complete representation of the optimal policy for the POMDP.
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Table 4. Summary of parameters for the POMDP model.

Parameter Meaning Source Value

by Annual mortality rate of Anderson and Smith [12] 0.002~0.299
other-cause diseases (Age specific)

Ve Annual metastasis rate of Ghani et al. [30] 0.069
untreated PCa

Yy Annual metastasis rate of Zhang et al. [81] 0.006
treated PCa

o, Annual PCa death rate of Anderson and Smith [12] 0.07~0.074
metastasized PCa (Age specific)

1—pp Annual disutility for posttreatment Heijnsdijk et al. [38] 0.05

11—y, Annual disutility for metastasis Heijnsdijk et al. [38] 0.4

1 Instantaneous disutility for biopsy Chhatwal et al. [17], 0.05

Kulkarni et al. [42]
K Instantaneous disutility for treatment Heijnsdijk et al. [38] 0.247

5. Data Sources and Model Uncertainty

Parameterization of models, such as the MDP and POMDP models of the previous section,
relies on data. There are many sources of data on chronic diseases such as research study data,
insurance claims data (private and public), hospital and outpatient clinic data, vital statistics
collected by government agencies (e.g., Centers for Disease Control and Prevention in the
United States), and many others. The U.S. National Institutes of Health (NIH) is the principal
agency in the United States that provides research funding for studies of a vast range of
diseases. Many of these studies share their data with other researchers according to the data
sharing plan that is required as part of the initial grant application. The following NIH policy
guidance statement explains what researchers can expect [55]: “In NIH’s view, all data should
be considered for data sharing. Data should be made as widely and freely available as possible

Figure 6. (Color online) Illustration of all of the nondominated a-vectors for the optimal value function
of the POMDP for active surveillance at epoch t = 1.
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while safequarding the privacy of participants, and protecting confidential and proprietary
data” (emphasis in original). Not all data are available upon request for reasons such as
a special need for privacy, or in situations where data are proprietary; however, many data sets
are available either through a defined process for data sharing or a formal data use agreement
with a project investigator. Moreover, there are large observational data sets that are available
at a cost from public and private initiatives in the United States that aggregate data on large
portions of the population (e.g., Medicare data).

Observational data can be challenging to work with, as opposed to prospectively collected
research study data, because there is no control over the health interventions patients receive
in such cases, making it difficult to estimate a natural history model for a given disease. For
problems with a single one-time intervention (i.e., stopping-time problems), patients tran-
sition to an absorbing state representing posttreatment survival; thus, it may not be necessary
to consider the effect of treatment on the transition probabilities in such cases. When there are
multiple interventions (e.g., multiple medications, as in the diabetes example of Section 4), the
influence of interventions on transition probabilities becomes important. The previous ex-
amples in the context of type 2 diabetes and prostate cancer provide examples of ways to
estimate natural history models.

Often, the effect of interventions is to lower the probability of having an adverse event
associated with the disease. For many common diseases, statistical survival models exist that
can be used to estimate the probability of an adverse event. For instance, statistical models for
type 2 diabetes include the Framingham model (Anderson [6]), the UKPDS model (Stevens
et al. [71]), and the American College of Cardiology/American Heart Association pooled risk
calculator (Goff et al. [32]). These models predict the probability of diabetes complications
including cardiovascular events (stroke and coronary heart disease), kidney failure, and
blindness. Model inputs include gender, race, family history, and metabolic factors such as
cholesterol, blood pressure, and blood glucose. Health interventions modify the inputs to these
models and thus reduce the probability of transitioning to a complication state. When using
survival models in this way, it should be acknowledged that there is an implied assumption of
a causal relationship between the change in a risk factor (e.g., cholesterol, blood pressure) and
the risk of complications (e.g., heart attack, stroke).

5.1. Limitations of Model Estimation Because of Limited or Biased Data

The example of Section 4.1.1 describes a simple approach for estimating transition proba-
bilities that may be appropriate in situations in which there are enough data to identify
a suitably large subset of patients that initiated each of the interventions under study and for
which observations of the risk factor in question occur at high frequency. For data sets with less
frequent observations, imputation methods can provide a means to approximate individual
patient’s health status over time. For example, Shechter et al. [65] use curve fitting (smoothing
splines) to impute CD4 count between laboratory measures made at different points in time.
This imputation procedure is one of many approaches to addressing the commonly en-
countered challenge of missing data.

The simplest approach to dealing with missing data is to discard data for any patient that
has missing data, which is known as a complete case analysis. This approach may be ap-
propriate if there are a large number of samples and if the data are believed to be missing
completely at random (i.e., not associated with some measured or unmeasured covariate).
A straightforward approach that avoids deleting patient records is single imputation, which
replaces the missing value with a plausible estimate, such as the population mean (e.g.,
a patient with missing heart rate would have his heart rate replaced with the mean over the
remaining patients). More advanced methods, such as stochastic regression imputation, use
regression models to impute values by including relevant covariates when fitting the model and
then sampling the normally distributed residual term. The text by Enders [26] is an excellent
introductory resource for learning about missing data analysis.
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Any approach that uses observational data may be biased. For example, treatment esti-
mates can be biased because the population that received treatment is likely to differ from the
population that did not. In the above example, this would occur if patients with high HbAlc
levels are more likely to receive treatment and if the response of these patients to treatment
differs from patients with low HbAlc levels. Regression models can be used to reduce bias by
incorporating covariates that have the potential to influence the risk factor under consid-
eration and the decisions to initiate medications that may, in turn, affect the risk factor. Linear
regression for the HbA1C example would have HbA1C as the dependent variable, and in-
dependent variables would be age, gender, diabetes medications, time since diagnosis, and any
other factors that may explain HbAlc for a particular patient. A multidimensional model such
as this is likely to produce more accurate estimates of treatment effects for medications by
accounting for the role of covariates that are statistically significant in describing the ob-
servations. There are many possible choices of regression models to use, and the best choice
depends on the context. Many studies in the context of chronic diseases use longitudinal data
for multiple patients, often referred to as panel data, that provide repeated measures for each
patient in the panel. Given the reasonable expectation of variation between patients and
correlation of repeated measures within patients, random effects models are commonly
employed because they incorporate random intercepts and model coefficients that describe
variance and covariance of the observed dependent variable over time. A helpful tutorial on
random effects models can be found in Littell et al. [47].

Propensity scoring is another well-known method that is used to address bias in obser-
vational data. Propensity scoring is one of many types of matching methods that consider the
influence of patient attributes on the decision to initiate a health intervention. A propensity
score is typically based on a logistic regression model to predict whether patients will receive
treatment on the basis of their attributes. The score is then used to match patients by the
factors that influence treatment, which reduces bias by mitigating the influence that patient
attributes have on estimates of the outcome variable. D’Agostino [22] provides an excellent
introductory tutorial on propensity scoring for bias reduction in the context of estimating
treatment effects.

5.2. Quantifying Model Uncertainty

The examples of Section 4 are based on parameters obtained from point estimates derived from
longitudinal data, in the case of transition probabilities, or from survey data in the case of
disutilities. All of these parameters are subject to statistical variation, and sensitivity analysis
should be employed to assess the influence of model parameter uncertainty on any conclusions
that are drawn from the model. Approaches for sensitivity analysis vary depending on whether
the analysis considers reward parameters or transition probabilities. In some sense, reward
parameter uncertainty is more straightforward because the rewards often vary independently
as opposed to transition probabilities that must lie in the unit simplex.

Sensitivity analyses for reward parameters typically vary the parameters that define the
rewards within some plausible range such as a statistical confidence region or a range of
estimates drawn from multiple sources. Re-solving models for different choices of the reward
parameters provides information on the influence of changes on the optimal value function and
the optimal policy. It is important to consider both of these types of changes because it may be
the case that changes in a specific parameter will affect the optimal value function signifi-
cantly, whereas the optimal policy may not be sensitive to these changes. Tan and Hartman
[73] explore the inverse problem of determining the degree to which reward parameters can
vary without the optimal policy changing.

Several authors have studied sensitivity to variation in transition probability matrices. For
example, Mannor et al. [50] and Goh et al. [33] analyze the variance of the estimated value
function for a stationary infinite-horizon Markov model using the closed-form expression for
the value function. Approaches suitable for nonstationary finite-horizon models include
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bootstrapping (Craig and Sendi [21]) and a Bayesian approach (Briggs et al. [10]) that uses the
source data for the original model estimation. Chen et al. [16] describe a framework for
conducting sensitivity analysis on the optimal policy of an MDP using a Bayesian approach to
sample the MDP’s transition probabilities. Zhang et al. [80] propose an approach for sensi-
tivity analysis of transition probabilities based on Monte Carlo sampling under the condition
that each transition probability has a defined range (e.g., statistical confidence interval, expert
opinion), but the source data are not available. For a given row of the transition probability
matrix, p(-|3;) at epoch ¢, the elements of the row must satisfy the following conditions:

LBy (31:113t) <pe(3e4150) < UBy(5141131), Z pe(Sen1]3) =1, (11)

si1€F

where LBy(3141|3;) and UBy(3:41|3;) are the lower and upper bounds on the transition proba-
bilities, respectively. Zhang et al. [80] propose an implementation of Smith’s random-direction
algorithm for generating a series of uniformly distributed random points within a bounded,
convex region (in this case, the intersection of a hyperrectangle and the unit simplex defined by
the polytope in Equation (11)) (Smith [69]).

6. Other Models for Sequential Decision Making

The focus of this tutorial has been on MDPs and POMDPs because these are fundamental
models that serve as a foundation for other approaches to sequential decision making. There
are many important variations these of models and methods that are relevant to the context of
medical decision making. In this section, we provide a few brief examples.

Robust MDPs. Approaches for addressing parameter uncertainty have been studied for
many years. The basic idea is to find policies that satisfy some measure of robustness with
respect to parameter variation. Satia and Lave [62] were among the first to consider MDPs
with uncertain parameters. They consider stationary problems in the context of a stochastic
game in which one player decides on the policy and the other selects the model parameters from
some defined region. White and El-deib [77] consider uncertainty in reward parameters in the
context of infinite-horizon MDPs with the goal of generating the complete set of optimal
policies over a convex set of rewards. Later work by the same authors extends the work of Satia
and Lave [62] by presenting bounds and approximation methods for the case of an MDP with
uncertain transition probabilities in the context of a stochastic game (White and El-deib [78]).
More recently, Iyengar [40] and Nilim and Ghaoui [56] have provided an analysis of problems
that address the issue of uncertainty in transition probabilities using a min-max approach.
They provide an analysis of the problems including differentiating between easy versus hard
problems where the dividing line is drawn in part by a commonly employed assumption known
as rectangularity, which implies independence among rows of the transition probability
matrix. Under the rectangularity assumption, the simplest version of a robust MDP is the
interval model that assumes that independent intervals on the transition probabilities col-
lectively define the uncertainty set, W(s;, hy, a;), within which the transition probability matrix
varies. The optimality equations in this context are

) = ey a) 4+ A i { 150, P, } . (12
vt(St t) atgégﬁt){n(& tat)+ Pt('\Si,hhgglero%i(smhi,a:) %pt(ﬂst tat)vt+1(]) } ( )

forall s, €S, hy € ¥, and all t € T\{T}. The end-of-horizon boundary condition is vy (sz, hy) =
rr(st, hr) for all sy € F and hr € H 7. The minimization problem in Equation (12) is known as
the inner problem. The computational effort to solve the optimality equations depends in large
part on the inner problem, which in turn depends strongly on the structure of the uncertainty
set. The rectangularity property guarantees the problem can be decomposed state by state at
each decision epoch. However, in some cases, this assumption, which allows the adversary to
modify the transition probabilities independently at each decision epoch, may generate policies
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that are extremely conservative in their response to uncertainty. An illustration of this can be
found in the context of medical treatment decisions in Zhang et al. [80], where the authors show
that expected value to go for the true worst-case policy is far more pessimistic than the worst case
achieved from Monte Carlo sampling of transition probability matrices. Wiesmann et al. [79]
examine the implications of relaxing the rectangularity assumption in various ways and classify
the complexity of the resulting problems. Steimle et al. [70] present a new framework that relaxes
the rectangularity function and seeks to mitigate the conservative nature of max-min formu-
lations by focusing on an optimal policy that performs well based on a distribution of MDPs.
Reinforcement Learning. Many learning-based methods are focused on sequential decision
making under the fundamental assumption that the states and actions of the system are known,
but the underlying transition probabilities are not. In this context, the focus becomes one of
learning over time through a combination of exploration and exploitation of the reward response
associated with alternative state—action pairs. The learner is assumed to observe the rewards
associated with each state—action pair, r;(s;, by, a;) at each epoch t. The simplest example of an
algorithmic implementation is Monte Carlo policy evaluation. In this setting, state—action pairs
are generated using simulation based on a black box (i.e., the underlying model in unknown). The
learner does not know the model that generates the state—action pairs, but through a process of
sequential experimentation, the ideal policy can be learned. The new policy selected in each
iteration is based either on the policy that maximizes expected rewards (exploitation) or on
a randomly selected policy (exploration). The latter occurs with some probability e that is se-
lected as an algorithm parameter. The randomized policy 7 uses the policy obtained from the
policy improvement step with probability 1 — €; otherwise, the policy is determined by randomly
selecting actions according to some probability distribution, with probability e. The algorithm
converges to the optimal policy asymptotically; however, this is not a practical algorithm because
the number of sample paths is infinite. Using a finite number of samples surfaces some important
questions about how to trade off statistical error with accuracy in the policy evaluation step.
Whereas Algorithm 4 serves as a useful device for explaining the basic concept behind re-
inforcement learning, many other more efficient approaches have been proposed that take ad-
vantage of incremental updating, such as temporal difference learning, Q-learning, and many
others. The introductory textbook by Sutton and Barto [72] provides an excellent survey of these
methods. Murphy [53] develops a statistical framework for estimating optimal adaptive treat-
ment policies in a sequential decision-making setting. Her work is motivated by the use of data
from randomized trials, under the assumption that a stochastic model for changes in a patient’s
health status over time is unknown, but observational data about the patient’s health state and
treatment actions are available periodically at discrete time intervals. This work has led to
important methodological extensions (see, e.g., Lei et al. [45] and Murphy [54]) and applications
in contexts such as depression, drug addiction, hypertension, and warfarin dosing (Anderson et al.
[7], Brooner and Kidorf [11], Glasgow et al. [31], Untzer et al. [76]), to name a few examples.

Algorithm 4 (Monte Carlo Policy Iteration)

1: Input: Select an initial policy 7 for policy evaluation. Choose € for randomization of
policy 7.

2: Policy Evaluation: Randomly select an infinite number of starting pairs (s, ag) and
a corresponding sample path of future states and actions. For all (s, hy, 7(s;)) in the
sample path compute (s, hy, 7(s;)) = 74(st, b, 7(50, he)) + A g, N (s, har, 7(50)+
TT(ST, hT)

3: Policy Improvement: For all (s;, h;): 7(s;, by) = argmax{v(s;,hy, (84, hy) }-

4: Return to Policy Evaluation.

Simulation-Optimization. Surprisingly, the use of simulation-optimization in medical de-
cision making appears to be quite limited given the degree to which simulation is used for
modeling of diseases (Kuntz et al. [43]). Many models in the medical literature are based on
Monte Carlo simulation with the goal of evaluating one or more predetermined policies for
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a population of patients represented by a microsimulation model, so called because such models
simulate each patient independently (also called first-order Monte Carlo simulations). Simu-
lation optimization is particularly applicable to cases in which the Markov assumption may not
be appropriate and thus may disqualify MDPs as optimization models. One such example is in
the optimization of prostate cancer screening policies based on PSA, a biomarker that increases
over time following the onset of cancer (Gulati et al. [35]). Underwood et al. [75] use a genetic
algorithm with Monte Carlo simulation for evaluation of an iteratively generated population of
PSA-screening strategies. The authors show that this approach could identify age-dependent
screening strategies that outperform “static” policies proposed in the literature. Fu [29] provides
an excellent survey of simulation-optimization methods for the interested reader.

7. Conclusions

Modeling approaches for optimizing sequential decision making such as MDPs and POMDPs
hold great promise for transforming raw data into optimal policies for health interventions.
Early work in the operations research field has focused on model analysis and algorithm
development. By contrast, the medical field has focused on the development of stochastic
models of diseases using a wide range of data sources. The recent emergence of large ob-
servational data sets, funded by public and private initiatives in the United States, combine
these different types of data to create longitudinal data on large portions of the U.S. pop-
ulation. However, the full potential of these data are largely untapped because of a lack of data
science methods for addressing missing data, data errors, selection bias, verification bias, and
other characteristics that confound elicitation of optimal treatment practices from longitu-
dinal observational data. As a result, opportunities abound for research at the intersection of
sequential decision making and model estimation that can leverage the discoveries from these
two bodies of literature. There is a pressing need to develop approaches for mitigating the
influence of uncertainty, bias, and ambiguity that naturally occurs in all mathematical models
but that can be particularly cumbersome in a sequential setting because of the resulting loss of
convenient structural properties that allow for the “divide-and-conquer” approach commonly
employed in dynamic programming. There is also a great need to develop well-validated
models that confirm or challenge the strong assumptions that are common in sequential
decision making, such as a risk-neutral decision maker and the Markov assumption that is
commonly employed. Finally, there is a need for success stories in the real-world imple-
mentation of sequential optimization approaches in medicine to build trust among decision
makers including physicians and patients.
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