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ABSTRACT
Markov decision processes (MDPs) have found success in many application areas that involve
sequential decision making under uncertainty, including the evaluation and design of treatment
and screening protocols for medical decision making. However, the data used to parameterize the
model can influence what policies are recommended, and multiple competing data sources are
common in many application areas, including medicine. In this article, we introduce the Multi-
model Markov decision process (MMDP) which generalizes a standard MDP by allowing for mul-
tiple models of the rewards and transition probabilities. Solution of the MMDP generates a single
policy that maximizes the weighted performance over all models. This approach allows the deci-
sion maker to explicitly trade-off conflicting sources of data while generating a policy of the same
level of complexity for models that only consider a single source of data. We study the structural
properties of this problem and show that it is at least NP-hard. We develop exact methods and
fast approximation methods supported by error bounds. Finally, we illustrate the effectiveness and
the scalability of our approach using a case study in preventative blood pressure and cholesterol
management that accounts for conflicting published cardiovascular risk models.

ARTICLE HISTORY
Received 10 January 2020
Accepted 24 January 2021

KEYWORDS
Dynamic programming;
medical decision making;
Markov decision processes;
parameter ambiguity;
healthcare applications

1. Introduction

The Markov decision processs (MDP) is a mathematical
framework for sequential decision making under uncertainty
that has informed decision making in a variety of applica-
tion areas including inventory control, scheduling, finance,
and medicine (Puterman, 2014; Boucherie and van Dijk,
2017). MDPs generalize Markov chains in that a decision
maker (DM) can take actions to influence the rewards and
transition dynamics of the system. When the transition
dynamics and rewards are known with certainty, standard
dynamic programming methods can be used to find an opti-
mal policy, or set of decisions, that will maximize the
expected rewards over the planning horizon.

Unfortunately, the estimates of rewards and transition
dynamics used to parameterize the MDPs are often impre-
cise and lead the DM to make decisions that do not perform
well with respect to the true system. The imprecision in the
estimates arises due to these values being typically obtained
from observational data or from multiple external sources.
When the policy found via an optimization process using
the estimates is evaluated under the true parameters, the
performance can be much worse than anticipated (Mannor
et al., 2007). This motivates the need for MDPs that account
for this ambiguity in the MDP parameters.

In this article, we are motivated by situations in which
the DM relies on external sources to parameterize the
model, but has multiple credible choices which provide

potentially conflicting estimates of the parameters. In such a
situation, the DM may be grappling with the following ques-
tions: Which source should be used to parameterize the
model? What are the potential implications of using one
source over another? To address these questions, we propose
a new method that allows the DM to simultaneously con-
sider multiple models of the MDP parameters and create a
policy that balances the performance while being no more
complicated than an optimal policy for an MDP that only
considers one model of the parameters.

1.1. Applications to medical decision making

We are motivated by medical applications for which
Markov chains are among the most commonly used sto-
chastic models for decision making. A keyword search of
the US Library of Medicine Database using PubMed from
2010 to 2020 revealed more than 8300 articles on the topic
of Markov chains. Generalizing Markov chains to include
decisions and rewards, MDPs are useful for designing
optimal treatment and screening protocols, and have
found success doing so for a number of important dis-
eases; e.g., end-stage liver disease (Alagoz et al., 2007),
HIV (Shechter et al., 2008), breast cancer (Ayer et al.,
2012), and diabetes (Mason et al., 2014).

Despite the potential of MDPs to inform medical deci-
sion making, the utility of these models is often at the

CONTACT Lauren N. Steimle steimle@gatech.edu
Supplemental data for this article is available online at https://doi.org/10.1080/24725854.2021.1895454.

Copyright � 2021 “IISE”

IISE TRANSACTIONS
https://doi.org/10.1080/24725854.2021.1895454

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2021.1895454&domain=pdf&date_stamp=2021-05-08
http://orcid.org/0000-0002-4073-6165
http://orcid.org/0000-0002-0239-2920
http://orcid.org/0000-0002-6372-6066
https://doi.org/10.1080/24725854.2021.1895454
https://doi.org/10.1080/24725854.2021.1895454
http://www.tandfonline.com


mercy of the data available to parameterize the models.
The transition dynamics in medical decision making mod-
els are commonly parameterized using longitudinal obser-
vational patient data and/or results from the medical
literature. However, longitudinal data are often limited, due
to the cost of acquisition, and therefore, transition prob-
ability estimates are subject to statistical uncertainty.
Challenges also arise in controlling observational patient
data for bias and often there are unsettled conflicts in the
results from different clinical studies; see Mount Hood 4
Modeling Group (2007), Etzioni et al. (2012), and
Mandelblatt et al. (2016) for examples in the contexts of
breast cancer, prostate cancer, and diabetes, respectively.

A specific example, and one that we will explore in detail,
is in the context of cardiovascular disease for which risk cal-
culators estimate the probability of a major cardiovascular
event, such as a heart attack or stroke. There are multiple
well-established risk calculators in the clinical literature that
could be used to estimate these transition probabilities,
including the American College of Cardiology/American
Heart Association (ACC/AHA) Risk Estimator (Goff et al.,
2014) and the risk equations resulting from the Framingham
Heart Study (FHS) (Wolf et al., 1991; Wilson et al., 1998).
However, these two credible models give conflicting esti-
mates of a patient’s risk of having a major cardiovascular
event. Steimle and Denton (2017) showed that the best treat-
ment protocol for cardiovascular disease is sensitive to
which of these conflicting estimates are used, leaving an
open question as to which clinical study should be used to
parameterize the model.

The general problem of multiple conflicting models in
medical decision making has also been recognized by others
(in particular, Bertsimas et al. (2018)), but it has not been
addressed previously in the context of MDPs. As pointed
out in a report from the Cancer Intervention and
Surveillance Modeling Network regarding a comparative
modeling effort for breast cancer, the authors note that:

the challenge for reporting multimodel results to policymakers
is to keep it (nearly) as simple as reporting one-model results,
but with the understanding that it is more informative and
more credible. We have not yet met this challenge (Habbema
et al., 2006).

This highlights the goal of designing policies that are as
easily translated to practice as those that optimize with
respect to a single model, but with the robustness of policies
that consider multiple models. The primary contribution of
our work is meeting this challenge for MDPs.

The general problem of coping with multiple (potentially
valid) choices of data for medical decision making motivates
the following more general research questions: How can we
improve stochastic dynamic programming methods to
account for parameter ambiguity in MDPs? Further, how
much benefit is there to mitigating the effects of ambiguity?

1.2. Contributions

In this article, we present a new approach for handling par-
ameter ambiguity in MDPs, which we refer to as the Multi-

model Markov decision process (MMDP). An MMDP gen-
eralizes an MDP to allow for multiple models of the transi-
tion probabilities and rewards, each defined on a common
state space and a common action space. We consider a
problem in which each model has a corresponding weight,
and the DM seeks to find a single policy that will maximize
the weighted value function.

We show that, in general, optimal policies that maximize
the weighted value function may actually be history depend-
ent, making the problem of maximizing the weighted value
function more challenging to solve in certain cases. With
the aim of designing policies that are easily translated to
practice, we distinguish between two important variants: (i)
a case where the DM is limited to policies determined by
the current state of the system, which we refer to as the
Weighted Value Problem (WVP), and (ii) a more general
case in which the DM attempts to find an optimal history-
dependent policy based on all previously observed informa-
tion, which we refer to as the adaptive counterpart to the
WVP. We show that the adaptive counterpart is a special
case of a Partially-Observable MDP (POMDP) that is
PSPACE-hard, and we show that the WVP is NP-hard.

Based on our complexity analysis, the well-known back-
ward induction algorithm for finite-horizon MDPs cannot
solve the WVP to optimality. Therefore, we formulate a
mixed-integer program (MIP) that produces optimal poli-
cies. We first test this method on randomly generated prob-
lem instances, and find that even small instances are
difficult to solve. For larger problem instances, as one might
find in medical decision making applications, models are
computationally intractable. Therefore, we introduce a fast
heuristic based on backwards recursion that we refer to as
the Weight-Select-Update (WSU) with computational
bounds on the error. The WSU heuristic is fast and scales to
larger medical decision making instances, such as the
instance that motivated this work.

Finally, we present a case study for prevention of cardio-
vascular disease, a setting in which there is ambiguity due to
the existence of two well-known and competing risk models
for cardiovascular events (ACC/AHA and FHS). The goal is
to design an optimal treatment guideline that would work
well from a population perspective given both models are
plausibly correct. We show that this problem can me mod-
eled as an MMDP and solve the corresponding WVP. Our
study demonstrates the ability of MMDPs to blend the
information of multiple competing medical studies and dir-
ectly meet the challenge of designing policies that are easily
translated to practice while being robust to ambiguity arising
from the existence of multiple conflicting models.

The remainder of this article is organized as follows: In
Section 2, we provide some important background on MDPs
and discuss the literature that is most related to our work.
We formally define the MMDP in Section 3, and in Section
4 we present analysis of our proposed WVP for the MMDP
model. In Section 5, we discuss exact solution methods as
well as fast and scalable approximation methods that exploit
the model structure. We test these approximation algorithms
on randomly generated problem instances and describe the
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results in Section 6. In Section 7, we present our case study.
Finally, in Section 8, we summarize the most important
findings from our research and discuss the limitations and
opportunities for future research.

2. Background and literature review

In this article, we focus on discrete-time, finite-horizon
MDPs with parameter ambiguity. In this section, we will
describe the MDP and parameter ambiguity, as well as the
related work aimed at mitigating the effects of ambiguity
in MDPs.

2.1. MDPs

The MDP is a common framework for modeling sequential
decision making that influences a stochastic reward process.
The sequence of events that define the MDP are as follows:
first, an initial state of the system s1 2 S is determined
according to the initial distribution l1 2MðSÞ, where Mð�Þ
denotes the set of probability measures on the discrete set.
The DM observes the state s1 2 S and selects an action a1 2
A: Then, the DM receives a reward r1ðs1, a1Þ 2 R and then
a new state of the system s2 2 S is realized with probability
p1ðs2js1, a1Þ 2 ½0, 1�: This process continues whereby for any
decision epoch t 2 T � f1, :::,Tg, the DM observes the state
st 2 S, selects an action at 2 A, and receives a reward
rtðst , stÞ, and a new state stþ1 2 S is realized with probability
ptðstþ1jst , atÞ: The DM selects the last action at time T that
may influence which state is observed at time Tþ 1 through
the transition probabilities. Upon reaching sTþ1 2 S at time
Tþ 1, the DM receives a terminal reward of rTþ1ðsTþ1Þ 2 R:
Future rewards are discounted at a rate of a 2 ð0, 1�, which
accounts for the preference of rewards received now over
rewards received in the future. In this article, we assume,
without loss of generality, that the discount factor is already
incorporated into the reward definition. We will refer to the
set of decision epochs as T , the set of rewards as R 2
R
jS�A�T j, and the set of transition probabilities as P 2

R
jS�A�S�T j with elements satisfying ptðstþ1jst , atÞ 2 ½0, 1� andP
stþ12S ptðstþ1jst , atÞ ¼ 1,8t 2 T , st 2 S, at 2 A: Throughout

the remainder of this article, we will use the tuple
ðT ,S,A,R, P, l1Þ to summarize the parameters of an MDP.

The realized value of the DM’s sequence of actions is the
total reward over the planning horizon:

XT
t¼1

rtðst , atÞ þ rTþ1ðsTþ1Þ: (1)

The objective of the DM is to select the sequence of actions
in a strategic way so that the expectation of (1) is maxi-
mized. Thus, the DM will select the actions at each decision
epoch based on some information available to her. The
strategy by which the DM selects the action for each state at
decision epoch t 2 T is called a decision rule, pt 2 Pt , and
the set of decision rules over the planning horizon is called
a policy, p 2 P:

There exist two dichotomies in the classes of policies
from which a DM may select: (i) history-dependent vs.

Markov, and (ii) randomized vs. deterministic. History-
dependent policies may consider the entire history of the
MDP, ht :¼ ðs1, a1, … , at�1, stÞ, when prescribing which
action to select at decision epoch t 2 T , whereas Markov
policies only consider the current state st 2 S when selecting
an action. Randomized policies specify a probability distri-
bution over the action set, ptðstÞ 2MðAÞ, such that action
at 2 A will be selected with probability ptðatjstÞ:
Deterministic policies specify a single action to be selected
with probability 1. For standard MDPs, there is guaranteed
to be a Markov deterministic policy that maximizes the
expectation of (1) (Proposition 4.4.3 of Puterman (2014)),
which allows for efficient solution methods that limit the
search for optimal policies to the Markov Deterministic
(MD) policy class, p 2 PMD: We will distinguish between
history-dependent (H) and Markov (M), as well as random-
ized (R) and deterministic (D), using superscripts on P. For
example, PMR denotes the class of Markov random-
ized policies.

To summarize, given an MDP ðT ,S,A,R, P, l1Þ, the DM
seeks to find a policy p that maximizes the expected rewards
over the planning horizon:

max
p2P

E
p, P, l1

XT
t¼1

rtðst , atÞ þ rTþ1ðsTþ1Þ
" #

: (2)

A standard MDP solution can be computed in polynomial
time because the problem decomposes when the search over
P is limited to the Markov deterministic policy class, PMD:
We will show that this and other properties of MDPs no
longer hold when parameter ambiguity is considered.

2.2. Parameter ambiguity and related work

MDPs are known as models of sequential decision making
under uncertainty. However, this “uncertainty” refers to the
imperfect information about the future state of the system
after an action has been taken due to stochasticity. The tran-
sition probability parameters are used to characterize the
likelihood of these future events. For the reasons described
in Section 1, the model parameters themselves may not be
known with certainty. For clarity, throughout this article, we
will refer to uncertainty as the imperfect information about
the future which can be characterized via a set of transition
probability parameters. We refer to ambiguity as the imper-
fect information about the transition probability parame-
ters themselves.

In this article, we consider a variation of MDPs in which
parameter ambiguity is expressed through multiple models
of the underlying Markov chain and the goal of the DM is
to find a policy that maximizes the weighted performance
across these different models. The concept of multiple mod-
els of parameters is seen in the stochastic programming lit-
erature whereby each model corresponds to a “scenario”
representing a different possibility for the problem data
(Birge and Louveaux, 2011). Stochastic programming prob-
lems typically consist of multiple stages during which the
DM has differing levels of information about the model
parameters. For example, in a two-stage stochastic program,
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the DM selects initial actions during the first-stage before
knowing which of the multiple scenarios will occur. The
DM subsequently observes which scenario is realized and
takes recourse actions in the second stage. In contrast, in the
MMDP, the DM must specify all actions before the model
parameters are realized.

A recent stream of research on MDPs with parameter
ambiguity has taken the approach of multiple models.
Ahmed et al. (2017) proposed sampling rewards and transi-
tion probabilities at each time step to generate a finite set of
MDPs and then seek to find one policy that minimizes the
maximum regret over the set of MDPs. To do this, they for-
mulate an MIP to approximate an optimization problem
with quadratic constraints which minimizes regret. They
also propose cumulative expected myopic regret as a meas-
ure of regret for which dynamic programming algorithms
can be used to generate an optimal policy. The authors
require that the sampled transition probabilities and rewards
are stage-wise independent, satisfying the rectangularity
property that is often leveraged in robust dynamic program-
ming approaches (see Appendix A.1). Concurrently and
independent of our work, Buchholz and Scheftelowitsch
(2019) considered the problem of finding a policy that maxi-
mizes a weighted performance across “concurrent” infinite-
horizon MDPs. They show that their problem is NP-hard
and that randomized policies may be optimal in the infinite-
horizon case. We will show that the finite-horizon problem
is NP-hard and that there will exist a deterministic policy
that is optimal. Building on the weighted value problem pro-
posed here and by Buchholz and Scheftelowitsch (2019),
Meraklı and K€uç€ukyavuz (2020) proposed a percentile opti-
mization formulation of the multiple models problem to
reflect the DM with an aversion to losses in performance
due to parameter ambiguity in infinite-horizon MDPs and
Steimle et al. (2021) studied computational methods for
solving our non-adaptive problem exactly. Meraklı and
K€uç€ukyavuz (2020) and Buchholz and Scheftelowitsch
(2019) both provide mixed-integer linear programming for-
mulations for determining the optimal pure policy and a
nonlinear programming formulation for the optimal
randomized policy, as well as local search heuristics that
work well on their benchmark test instances. Multiple mod-
els have also been studied for POMDPs: Saghafian (2018)
uses multiple models of the parameters to address ambiguity
in transitions among the core states in a POMDP and uses
an objective function that weights the best-case and worst-
case value-to-go across the models. This is in contrast with
our work that considers the expected value-to-go among
multiple models. They assume that the best-case and worst-
case model are selected independently across decision
epochs. In our proposed MMDP formulation, the objective
is to find a single policy that will perform well in each of
the models which may have interdependent transition prob-
abilities across different states, actions, and decision epochs.

Perhaps the most closely related healthcare-focused
research to this article is that of Bertsimas et al. (2018) who
recently addressed ambiguity in simulation modeling in the
context of prostate cancer screening. The authors propose

solving a series of optimization problems via an iterated
local search heuristic to find screening protocols that gener-
ate a Pareto optimal frontier on the dimensions of average-
case and worst-case performance in a set of different simula-
tion models. This article identified the general problem of
multiple models in medical decision making; however, they
do not consider this issue in MDPs. The concept of multiple
models of problem parameters in MDPs has mostly been
used as a form of sensitivity analysis. For example, Craig
and Sendi (2002) propose bootstrapping as a way to gener-
ate multiple sets of problem parameters under which to
evaluate the robustness of a policy to variation in the transi-
tion probabilities. There has been less focus on finding poli-
cies that perform well with respect to multiple models of the
problem parameters in MDPs, especially with the goal of
these policies being just as easily translated to practice as
those found by optimizing with respect to a single model.

In light of the medical decision application we discuss
later, it should be noted that several past studies have con-
sidered aspects of model uncertainty in the healthcare con-
text. Further, there have been other studies that have
investigated multiple models in the area of multi-task
reinforcement learning, and robust Markov decision processes
are another approach for solving MDPs with parameter
ambiguity. In the interest of brevity, we summarize this lit-
erature in Appendix A. Although our approach is distinct
from the robust MDP approaches described in the appendix,
we provide a comparison of how these two approaches com-
pare on our case study (and the details are in Appendix E).

3. Multi-model Markov decision processes

In this section, we introduce the detailed mathematical for-
mulation of the MMDP starting with the follow-
ing definition:

Definition 1. (Multi-model Markov decision process).
An MMDP is a tuple (T ,S,A,M,K) where T is the set

of decision epochs, S and A are the state and action spaces,
respectively, M is the finite discrete set of models, and K :
¼ fk1, :::, kjMjg is the set of exogenous models weights with
km 2 ð0, 1Þ, 8m 2 M and

P
m2M km ¼ 1: Each model m 2

M is an MDP, ðT ,S,A,Rm, Pm,l1
mÞ, with a unique com-

bination of rewards, transition probabilities, and initial
distribution.

The requirement that km 2 ð0, 1Þ is to avoid the trivial
cases: If there exists a model m 2M such that km ¼ 1, the
MMDP would reduce to a standard MDP. If there exists a
model m 2 M such that km ¼ 0, then the MMDP would
reduce to an MMDP with a smaller set of models, Mn
fmg: The model weights, K, are exogenous, and it is
assumed that the DM has accurate estimates of these
weights. Depending on the context, the model weights may
be determined by expert judgment, estimated from empirical
distributions, or treated as uninformed priors when each
model is considered equally reputable (as in Bertsimas
et al. (2018)).

In an MMDP, the DM considers the expected rewards of
the specified policy in the multiple models. The value of a
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policy p 2 P in model m 2 M is given by its expected
rewards evaluated with model m’s parameters:

vmðpÞ :¼ E
p, Pm , lm1

XT
t¼1

rmt ðst , atÞ þ rmTþ1ðsTþ1Þ
" #

: (3)

We associate any policy, p 2 P, for the MMDP with its
weighted value:

WðpÞ :¼
X
m2M

kmv
mðpÞ

¼
X
m2M

kmE
p,Pm ,lm1

XT
t¼1

rmt ðst , atÞ þ rmTþ1ðsTþ1Þ
" #

: (4)

Thus, we consider the WVP in which the goal of the DM is
to find the policy p 2 P that maximizes the weighted value
defined in (4):

Definition 2 (Weighted Value Problem)
Given an MMDP ðT ,S,A,M,KÞ, the weighted value

problem is defined as the problem of finding a solution to:

W� :¼ max
p2P

WðpÞ

¼ max
p2P

X
m2M

kmE
p, Pm , lm1

XT
t¼1

rmt ðst , atÞ þ rmTþ1ðsTþ1Þ
" #8<

:
9=
;
(5)

and a set of policies P� :¼ fp� : Wðp�Þ ¼W�g � P that
achieve the maximum in (5).

The WVP can be viewed as an interaction between the
DM (who seeks to maximize the expected weighted value of
the MMDP) and nature. In many robust formulations, nature
is viewed as an adversary that represents the risk-aversion to
ambiguity in model parameters. However, in the WVP,
nature plays the role of a neutral counterpart to the DM. In
this interaction, the DM knows the complete characterization
of each of the models of the system, and nature selects which
model will be given to the DM by randomly sampling
according to the model weights K 2MðMÞ: In this sense,
we might associate the model weights with a probability dis-
tribution over the models. For a fixed model m 2 M, there
will exist an optimal policy for m that is Markov (i.e.,
p�m 2 PM). We will focus on the problem of finding a policy
that achieves the maximum in (5) when P ¼ PM: Here, the
DM specifies a Markov policy, p 2 PM , a priori. That is, the
policy is composed of actions based only on the current state
at each decision epoch. Therefore the policy is a distribution
over the actions: p ¼ fptðstÞ ¼ ðptð1jstÞ, :::,ptðjAjjstÞÞ 2
MðAÞ : at 2 A, st 2 S, t 2 T g: In this policy, ptðatjstÞ is the
probability of selecting action at 2 A if the MMDP is in state
st 2 S at time t 2 T : Then, after the DM has specified the
policy, nature randomly selects model m 2M with probabil-
ity km. The choice of model remains fixed for the entire hori-
zon. Now, s1 2 S is determined according to the initial
distribution lm1 2MðSÞ and the DM selects an action, a1 2
A, according to the pre-specified distribution p1ðs1Þ 2
MðAÞ: Then, the next state s2 2 S is determined according
to pm1 ð�js1, a1Þ 2MðSÞ: The interaction carries on in this way

where the DM selects actions according to the pre-specified
policy, p, and the next state is determined according to the
distribution given by the corresponding row of the transition
probability matrix. From this point of view, it is easy to see
that under a fixed policy, the dynamics of the stochastic pro-
cess follow a Markov chain.

The evaluation of a given policy in the weighted value
problem is illustrated in Figure 1. Policy evaluation is
straightforward; one can use backwards recursion. Although
policy evaluation is similar for MMDPs as compared to
standard MDPs, policy optimization is much more challeng-
ing for the WVP. For example, backwards induction, a well-
known solution technique for finite-horizon MDPs, does not
apply to MMDPs where actions are coupled across models.

As mentioned above, in this article we focus on the WVP
wherein the DM selects a Markov policy which can be inter-
preted as a non-adaptive problem. However, in general, the
DM may benefit from a history-dependent policy that arises
in the adaptive counterpart to the WVP. Although this is
not the focus of this article, we consider this extension in
which the DM considers all history-dependent policies in
Appendix B. Some of the most important properties include
that a deterministic optimal policy exists and that this prob-
lem is a special case of a POMDP. These findings allow us
to reformulate the MMDP as an MDP defined on a continu-
ous state space for which a Markov policy is optimal and
design a solution method that leverages the special structure
of the state space.

4. Analysis of MMDPs

In this section, we will analyze the WVP as defined in (5).
We will describe the classes of policies that achieve the opti-
mal weighted value, the complexity of solving the problem,
and related problems that may provide insights into promis-
ing solution methods. These results and solution methods
are summarized in Table 1. For ease of reading, we defer all
proofs to Appendix C.

We begin by establishing the important result that there
always exists a deterministic optimal policy for the WVP.
This result is important because searching among policies in
the Markov deterministic policy class may be appealing for
several reasons: First, each individual model is solved by a

Figure 1. The figure illustrates the evaluation of a policy in terms of weighted
value, which is the objective function used to compare policies for an MMDP.
The DM specifies a policy p that is subsequently evaluated in each of the jMj
models. The weighted value of a policy p is determined by taking of the sum of
this policy’s value in each model m, vmðpÞ, weighted by the corresponding
model weight km.
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policy in this class and it could be desirable to find a policy
with the same properties as each model’s individual optimal
policy. Second, Markov policies are typically easier to imple-
ment because they only require the current state to be stored
rather than partial or complete histories of the DM. Third,
Markov deterministic policies are ideal for medical decision
making, the motivating application for this article, because
they can be easily translated to treatment guidelines that are
based solely on the information available to the physician at
the time of the patient visit, such as the patient’s current
blood pressure levels. For applications in medicine, such as
the case study in Section 7, deterministic policies are a neces-
sity, since randomization is unlikely to be considered ethical
outside the context of randomized clinical trials.

Proposition 1. There is always a Markov deterministic policy
that is optimal for the WVP.

This result means that for the WVP, the DM can restrict
her attention to the class of Markov deterministic policies.
This result may be surprising at first, due to the result of
Fact 2 in Singh et al. (1994), which states that the best sta-
tionary randomized policy can be arbitrarily better than the
best stationary deterministic policy for POMDPs. Although
this fact may seem to contradict Proposition 1, it is worth
noting that Fact 2 of Singh et al. (1994) was derived in the
context of an infinite-horizon MDP in which it is possible
that the same state can be visited more than once. In the
finite-horizon MMDP, no state st can be visited more
than once.

Although policy evaluation is easy for the WVP, policy
optimization over the class of Markov policies is prov-
ably hard.

Proposition 2. Solving the WVP is NP-hard.
We note that we have developed this result independently

of a proof of an equivalent result which can be found in the
thesis of Le Tallec (2007) describing the complexity of
MDPs with “general random uncertainty”. The proof in
Appendix C provides a thorough description of the reduc-
tion required to prove this result. The result of Proposition 2
implies that we cannot expect to find an algorithm that solves
the WVP for all MMDPs in polynomial time. Still, we are
able to solve the WVP by formulating it as an MIP as dis-
cussed in the following proposition.

Proposition 3. The WVP can be formulated as the following
MIP:

max
p, v

X
m2M

X
s2S

kml
m
1 ðsÞvm1 ðsÞ (6a)

s:t:
X
a2A

ptðajsÞ ¼ 1, 8s 2 S, t 2 T (6b)

MptðajsÞ þ vmt ðsÞ �
X
s02S

pmt ðs0js, aÞvmtþ1ðs0Þ 	 rmt ðs, aÞ þM

(6c)

8m 2 M, s 2 S, a 2 A, t 2 T
vmTþ1ðsÞ 	 rmTþ1ðsÞ, 8m 2M, s 2 S (6d)

ptðajsÞ 2 f0, 1g, 8a 2 A, s 2 S, t 2 T (6e)

vmt ðsÞ unrestricted, 8s 2 S, t 2 T ,m 2 M: (6f)

In this formulation, the decision variables, vmt ðsÞ 2 R,
represent the value-to-go from state s 2 S at time t 2 T in
model m 2 M: The binary decision variables, ptðajsÞ 2
f0, 1g, take on a value of one if the policy prescribes taking
action a 2 A, in state s 2 S, at epoch t 2 T , and
zero otherwise.

It is well-known that standard MDPs can be solved using
a linear programming (LP) formulation (Puterman, 2014,
section 6.9). Suppose that vtðs, aÞ represents the value-to-go
from state s 2 S using action a 2 A at decision epoch t 2
T : The LP approach for solving MDPs utilizes a reformula-
tion trick that finding maxa2Avtðs, aÞ is equivalent to finding
min vtðsÞ such that vtðsÞ 
 vtðs, aÞ for all feasible a. In this
reformulation, the constraint vtðsÞ 
 vtðs, aÞ is tight for all
actions that are optimal. The MIP formulation presented in
(6a) relies on similar ideas as the LP formulation of an
MDP, but is modified to enforce the constraint that the pol-
icy must be the same across all models.

In the MIP formulation of the WVP, we require that
constraints:

vmt ðsÞ 	 rmt ðs, aÞ þ
X
s02S

pmt ðs0js, aÞvmtþ1ðs0Þ þMð1� ptðajsÞÞ,

8m 2 M, s 2 S, a 2 A

are tight for the action a� 2 A such that ptða�jsÞ ¼ 1 for
any given state s 2 S, decision epoch t 2 T , and model
m 2 M: The purpose of the big-M is to ensure that vmt ðsÞ ¼
vmt ðs, aÞ only if ptðajsÞ ¼ 1 meaning that the value-to-go for
this state–time pair in model m 2 M corresponds to the
policy that is being used in all models. Thus, if action a 2 A
is selected (and thus, ptðajsÞ ¼ 1), we want vmt ðsÞ ¼ vmt ðs, aÞ
and if not (ptðajsÞ ¼ 0), we want vmt ðsÞ 	 vmt ðs, aÞ:
Therefore, we must select M sufficiently large enough for all
constraints.

The formulation of the WVP as an MIP may seem more
natural after a discussion of the connections with two-stage
stochastic programming (Birge and Louveaux, 2011). If we
view the WVP through the lens of stochastic programming,
the ptðajsÞ binary variables that define the policy can be
interpreted as the first-stage decisions of a two-stage stochas-
tic program. Moreover, nature’s choices of model, M, cor-
respond to the possible scenarios which are observed
according to the probability distribution K. In this interpret-
ation, the value function variables, vmt ðsÞ, can be viewed as
the recourse decisions. That is, once the DM has specified
the policy according to the p variables and nature has

Table 1. Summary of the main properties and solution methods related to
the MMDP.

Property Result Support for Result

Always a deterministic policy that is optimal? Yes Proposition 1
Computational complexity NP-hard Proposition 2
Exact solution method MIP Proposition 3
Upper bound on optimal weighted value? Yes Proposition 4
Heuristic, WSU Procedure 1
Guaranteed to be optimal? No Proposition 5
Bound on the error when jMj ¼ 2? Yes Proposition 6
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specified a model m 2 M, the DM seeks to maximize the
value function so long as it is consistent with the first-stage
decisions. From a stochastic programming point of view, we
can define a second-stage value function for a given set of
first-stage decision variables p and a given realization of the
model, m:

Vðp,mÞ ¼ maxv
hX

s2S
lm1 ðsÞvm1 ðsÞjMptðajsÞ þ vmt ðsÞ

�
X
s02S

pmt ðs0js, aÞvmtþ1ðs0Þ 	 rmt ðs, aÞ þM,

8s 2 S, a 2 A, t 2 T
i
:

We also can define VðpÞ as the recourse function:

VðpÞ ¼ E
m Vðp,mÞ½ � ¼ E

p, Pm , lm1
XT
t¼1

rtðst , atÞ þ rTþ1ðsTþ1Þ
" #

:

Formulation (6a) is the deterministic equivalent formulation
of this stochastic integer program. Notice that the second-
stage value function, Vðp,mÞ, corresponds to the definition
of vmðpÞ in (3), and the recource function, VðpÞ, corre-
sponds to the weighted value of a policy WðpÞ defined in
(4). The view of the WVP as a stochastic program also pro-
motes a heuristic in which the DM solves the Mean Value
Problem (MVP): a single MDP in which each parameter
takes on its weighted averages from the corresponding
parameters of the different models in the MMDP.

Our initial numerical experiments showed that moderate-
sized MDPs can be solved using (6), but this approach may
be too computationally intensive to solve large problems
such as those that arise in the context of medical decision
making. This motivated the development of a heuristic that
we describe in Section 5. The following relaxation of the
WVP allows us to quantify the performance of our heuristic:

Proposition 4. For any policy p̂ 2 P, the weighted value is
bounded above by the weighted sum of the optimal values in
each model. That is,X

m2M
kmv

mðp̂Þ 	
X
m2M

km max
p2PMD

vmðpÞ, 8p̂ 2 P:

The result of Proposition 4 allows us to evaluate the per-
formance of any MD policy even when we cannot solve the
WVP exactly to determine the true optimal policy. We use
this result to illustrate the performance of our approxima-
tion algorithm in Section 7.

Proposition 4 motivates several connections between
robustness and the value of information. First, the upper
bound in Proposition 4 is based on the well-known wait-and-
see problem in stochastic programming that relaxes the condi-
tion that all models must have the same policy. Second, the
Expected Value of Perfect Information (EVPI) is the expected
value of the wait-and-see solution minus the recourse problem
solution:

EVPI ¼
X
m2M

km max
p2PM

vmðpÞ
� �

�max
p2PM

X
m2M

kmv
mðpÞ

� �
:

Although the wait-and-see value provides an upper bound,
the value corresponds to a set of solutions, one for each
model, rather than a single implementable course of action.
Another common approach in stochastic programming is to
solve the MVP which is a simpler problem in which all
parameters take on their expected values. In the MMDP,
this corresponds to the case where all transition probabilities
and rewards are weighted as follows:

�ptðs0js, aÞ ¼
X
m2M

kmp
m
t ðs0js, aÞ, 8s 2 S, a 2 A, t 2 T

and

�rtðs, aÞ ¼
X
m2M

kmr
m
t ðs, aÞ:

Solving the MVP will give a single policy, �p, which we will
term the mean value solution, with the following expected
rewards:

Wð�pÞ ¼
X
m2M

kmv
mð�pÞ:

Thus, we can create a measure of robustness for an MMDP
termed the Value of the Weighted Value Solution (VWV):

VWV ¼W� �Wð�pÞ,

which parallels the well-known Value of the Stochastic Solution
(VSS) in stochastic programming (Birge and Louveaux, 2011,
section 4.2). If VWV is low, this implies that there is not
much value from solving the MMDP versus the MVP. On the
other hand, if VWV is high, this implies that the DM will
benefit significantly from solving the MMDP.

Although the WVP for MMDPs has connections to stochas-
tic programming, it also has connections to POMDPs that are
described in Appendix B. The MMDP may be constructed as a
special case of a POMDP, in which the core states are com-
prised of a copy of each state corresponding to each model. The
WVP described in the main body of this article can be viewed
as the problem of finding the best memoryless controller for this
POMDP (Vlassis et al., 2012). Memoryless controllers for
POMDPs are defined on the most recent observation only. For
an MMDP, this would translate to the DM specifying a policy
that is based only on the most recent observation of the state
(recall that the DM gets no information about the model part of
the state-model pair). As no history is incorporated into the def-
inition of the policy, this policy is permissible for the WVP.

5. Solution methods

We now discuss how to leverage the results of Section 4 to
solve the WVP. For conciseness, we defer the solution meth-
ods for the adaptive counterpart to the WVP to Appendix
B. We discuss the MIP formulation of Proposition 3 for
solving the WVP. Although the MIP formulation provides a
viable way to exactly solve this class of problems, the result
of Proposition 2 motivates the need for a fast approximation
algorithm that can scale to large MMDPs.
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5.1. MIP formulation

The big-M constraints are an important aspect of the MIP
formulation of the weighted value problem. Thus, we discuss
tightening of the big-M values in the following constraints:

vmt ðsÞ 	 rmt ðs, aÞ þ
X
s02S

pmt ðs0js, aÞvmtþ1ðs0Þ

þMð1� ptðajsÞÞ, 8m
2 M, s 2 S, a 2 A, t 2 f1, :::,Tg:

Recall that the decision variables of the form vmt ðsÞ 2 R
represent the value-to-go from state s 2 S at time t 2 T in
model m 2 M under the policy specified by the x variables.
For the purposes of this discussion, we define the optimal value
function for epoch t and model m for a given state–action pair
(s, a) as:

vmt ðs, aÞ ¼ rmt ðs, aÞ þ
X
s02S

pmt ðs0js, aÞvmtþ1ðs0Þ þMð1� ptðajsÞÞ,

8m 2 M, s 2 S, a 2 A, t 2 f1, :::,Tg:

For action a 2 A, we would like the smallest value of M
that still ensures that:

rmt ðs, aÞ þ
X
s02S

pmt ðs0js, aÞvmtþ1ðs0Þ

	 rmt ðs, a0Þ þ
X
s02S

pmt ðs0js, a0Þvmtþ1ðs0Þ þMm, s, t , 8a0 2 A:

Rearranging, we obtain:

Mm, s, t 
 rmt ðs, aÞ þ
X
s02S

pmt ðs0js, aÞvmtþ1ðs0Þ � rmt ðs, a0Þ

�
X
s02S

pmt ðs0js, a0Þvmtþ1ðs0Þ,

8a, a0 2 A:

(7)

A sufficient condition for (7) is the following:

Mm, s, t 
 max
a2A

vmt ðs, aÞ �min
a2A

vmt ðs, aÞ:

By the definition of vtðs, aÞ, we are assuming that the policy
defined by the x variables is being followed after time t.
However, we can relax this assumption further and allow
each model to follow a different policy to obtain the big-M
values, where maxa2Avmt ðs, aÞ is the largest value-to-go for
this model and mina2Avmt ðs, aÞ is the smallest value-to-go
for this model. This will provide tighter bounds that
strengthen the MIP formulation, and furthermore these
bounds can be computed efficiently using standard dynamic
programming methods.

Procedure 1 Weight-Select-Update (WSU) approxima-
tion algorithm

Input: MMDP
Let v̂mTþ1ðsTþ1Þ ¼ rmTþ1ðsTþ1Þ, 8m 2 M
t  T

while t 
 1 do
for Every state st 2 S do

p̂tðstÞ  argmax
at2A

� X
m2M

km

�
rmt ðst , atÞ

þ
X
stþ12S

pmt ðstþ1jst , atÞv̂mtþ1ðstþ1Þ
��

(8)

end for
for Every model m 2 M do

v̂mt ðstÞ  rmt ðst , p̂tðstÞÞ þ
X
stþ12S

pmt ðstþ1jst , p̂tðstÞÞv̂mtþ1ðstþ1Þ

(9)

end for

t  t−1

end while
Output: The policy p̂ ¼ ðp̂1, :::, p̂TÞ 2 PMD

5.2. WSU approximation algorithm

Next, we discuss our WSU algorithm, formalized in Procedure
1, which is a fast approximation algorithm for the non-adap-
tive problem. WSU generates decision rules p̂t 2 PMD

t stage-
wise starting at epoch T and iterating backwards. At epoch
t 2 T , the algorithm has an estimate of the value for this pol-
icy in each model conditioned on the state stþ1 at epoch t þ
1 2 T : This estimate is denoted v̂mtþ1ðstþ1Þ,8m 2 M,8stþ1 2
S: The algorithm weights the immediate rewards plus the
value-to-go for each of the models and then the algorithm
selects, for each state, an action that maximizes the sum of
these weighted terms and denotes this action p̂tðstÞ: Next, the
algorithm updates the estimated value-to-go for every state in
each model according to the decision rule p̂t at epoch t 2 T :
This procedure iterates backwards stage-wise until the actions
are specified for the first decision epoch.

Upon first inspection, it may not be obvious that WSU is
not guaranteed to produce the optimal MD policy; however,
this approximation algorithm fails to account for the fact
that, under a given policy, the likelihood of occupying a spe-
cific state could vary under the different models. The result
of Proposition 5 shows that ignoring this could lead to sub-
optimal selection of actions as illustrated in the proof.

Proposition 5. WSU is not guaranteed to produce an opti-
mal solution to the WVP.

Although WSU is not guaranteed to select the optimal
action for a given state–time pair, this procedure is guaranteed
to correctly evaluate the value-to-go in each model for the pro-
cedure’s policy, p̂: This is because, although the action selection
in (8) may be suboptimal, the update of the value-to-go in each
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model in (9) correctly evaluates the performance of this action
in each model conditional on being in state st at decision epoch
t. That is, for a fixed policy, policy evaluation for standard
MDPs applies to each of the models, separately.

Lemma 1. For jMj ¼ 2, if k1m > k2m, then the corresponding
policies p̂ðk1Þ and p̂ðk2Þ generated via WSU for these values
will be such that

vmðp̂ðk1ÞÞ 
 vmðp̂ðk2ÞÞ:

Lemma 1 guarantees that the policies generated using
WSU will have values in model m 2 M that are non-
decreasing in model m’s weight, km. This result is desirable
because it allows DMs to know that placing more weight on
a particular model will not result in a policy that does worse
with respect to that model. Lemma 1 is also useful for estab-
lishing the lower bound in the following proposition:

Proposition 6. For any MMDP with jMj ¼ 2, the error of
the policy generated via WSU, p̂, is bounded so that

Wðp�Þ �Wðp̂Þ 	 k1 v1ðp1Þ � v1ðp2Þ
� 	

þ k2 v2ðp2Þ � v2ðp1Þ
� 	

,

where pm is the optimal policy for model m and p� 2 PMD is
the optimal policy for WVP.

Proposition 6 provides an upper bound on the error for
the important special case of two models. Unfortunately, the
performance guarantee in Proposition 6 does not extend to
jMj > 2: The proof relies on Lemma 1 and the property
that, when jMj ¼ 2, k1 ¼ 1� k2 to summarize the differ-
ence between two weight vectors in terms of a single param-
eter that which will satisfy a complete ordering. For
jMj > 2, this model-wise complete ordering is no longer
available. Fortunately, the WSU heuristic and the upper
bound of Proposition 4 together provide computational
lower and upper bounds, respectively.

6. Computational experiments

In this section, we describe computational experiments
involving a set of test instances for comparing solution
methods for WVP on the basis of run-time and quality of
the solution. The first set of experiments were based on a
series of random instances of MMDPs. In Appendix D, we
consider a second set of experiments that were based on a
small MDP for determining the most cost-effective HIV
treatment policy. To compare the solution methods, we gen-
erated a solution for each instance using the WSU heuristic,
MVP heuristic, and the MIP formulation. We will compare
the weighted value policies obtained via the heuristics
(WNðp̂Þ) to the optimal value obtained by solving the MIP
to within 1% of optimality, W�

N :

Gap ¼W�
N �WNðp̂Þ

W�
N

� 100%,

where p̂ is the policy obtained from either WSU or MVP.
WSU and MVP were implemented using Python 3.7. All
MIPs were solved using Gurobi 8.1.1.

6.1. Test instances

We now describe the test instances used to compare the
solution methods. To generate the random test instances,
first, the number of states, actions, models, and decision
epochs were defined. We used a base case problem size of
four states, four actions, four decision epochs, and four
models. We generated a set of test instances where one
aspect of the problem description was varied at a time to
analyze the impact of growth in computation time as a func-
tion of states, actions, models, and decision epochs, inde-
pendently. Once the number of states, actions, models, and
decision epochs were defined, the model parameters were
randomly sampled for each instance of the fixed problem
size. In all test instances, it was assumed that the sampled
rewards were the same across models, the weights were
uninformed priors on the models, and the initial distribu-
tion was a discrete uniform distribution across the states.
The rewards were sampled from the uniform distribution:
rðs, aÞ � Uð0, 1Þ, 8ðs, aÞ 2 S � A: The transition probabilities
were obtained by sampling from a Dirichlet distribution
(Dir), which has a set of parameters defining a base measure
and a parameter defining the concentration of the distribu-
tion. For each row, the base measure was determined by
sampling a uniform U(0, 1) for each possible transition:
~pðs0js, aÞ � Uð0, 1Þ: Then, for every ðm, s, a, s0Þ 2 M� S �
A� S, the transition probabilities were normalized so that
the row of the transition probability matrix had elements
that sum to one:

pðs0js, aÞ :¼
~pðs0js, aÞP

s002S ~pðs00js, aÞ
:

The pðs0js, aÞ values were then used as the base measure
for the Dirichlet distribution, and we varied the concentra-
tion parameter to control for the amount of variation
among the models. Dirichlet distributions with the same
base measure have the same mean value of the transition
row, but higher values of the concentration parameter cor-
respond to distributions with less variance. For each sample,
we scaled by a factor of b / mins02Spðs0js, aÞ for b¼ 1, 10,
and 100:

ðpmð1js, aÞ, :::, pmðjSjjs, aÞÞ � Dirðbpð1js, aÞ, :::, bpðjSjjs, aÞÞ,
8s 2 S, a 2 A,m 2M:

These experiments allow us to test the performance of the
solution methods on many different kinds of MMDPs; how-
ever, these instances are not guaranteed to have structured
transitions and rewards that one might expect in practice.
Therefore, we also include the following test instances that
have a structure commonly observed in MDPs for medical
decision making.

6.2. Results

We now present the results of our computational experi-
ments comparing solution methods for WVP for these test
instances. Appendix D.1 presents the run-time of the three
proposed solution methods: MVP, WSU heuristic, and the
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exact MIP formulation. In summary, we find that the MVP
and WSU were able to solve the random test instances
quickly (under 0.1 CPU seconds for each instance) whereas
the average time to solve the MIP noticeably increased as
the size of the problem increases. The results suggest that
heuristics are needed to approximate solutions for larger
MMDPs, such as the one presented in the case study in
Section 7. The MVP and WSU heuristic also performed well
in terms of their average optimality gaps, although WSU
provided a better optimality gap in 79.2% of the test instan-
ces. WSU had an average optimality gap of 0.53% and
worst-case gap of 10.17%, whereas the MVP had an average
optimality gap of 1.17% and worst-case gap of 12.80%.
Table 2 shows the effect of the concentration parameter, b,
on the computational time and optimality gap. It appears
that the solution time for the MIP decreases as the concen-
tration parameter increases, but there is no such pattern
between the solution time for the WSU and MVP solution
times. Furthermore, there does not appear to be a clear con-
nection between the concentration parameter and the opti-
mality gap of the heuristics. In Table 2, we also report the
average and maximum VWV for each concentration param-
eter value. We observe that the average VWV is over 1% for
each value of the concentration parameter and the max-
imum VWV was over 14% across all instances. These find-
ings suggest that the solution to the MMDP could be a
valuable alternative to the solution of the MVP.
Furthermore, we report the value of using the heuristic
WSU rather than the MVP solution. We report this values
as the value of the WSU policy minus the value of the MVP
policy normalized to the value of the MVP policy. This is
indicated as “VWSU(%)” in the table. On average, WSU
performs better than MVP, but we do see cases where MVP
can perform up to 4.38% better. However, there are cases
where WSU can perform up to 9.81% better than MVP.
Fortunately, both of these solution methods are fast, and
therefore, a DM could generate both policies and pick the
one that performs better. WSU and MVP also solve the
medical decision making instances quickly and perform
quite well in terms of maximum optimality gap (see
Appendix D.2).

7. Case study: Blood pressure and cholesterol
management in type 2 diabetes

In this section, we present an MMDP to optimize the timing
and sequencing of the initiation of blood pressure medica-
tions and cholesterol medications for patients with type 2

diabetes. We begin by providing some context about the
problem, the MMDP model, and the parameter ambiguity
that motivates its use. Diabetes is one of the most common
and costly chronic medical conditions, affecting more than
25 million adults or 11% of the adult population in the
United States (Centers for Disease Control and Prevention,
2011). Diabetes is associated with the inability to properly
metabolize blood glucose (blood sugar) and other metabolic
risk factors that place the patient at risk of complications
including Coronary Heart Disease (CHD) and stroke. There
are several types of diabetes including type 1 diabetes, in
which the patient is dependent on insulin to live, gestational
diabetes, which is associated with pregnancy, and type 2 dia-
betes, in which the patient has some ability (albeit impaired)
to manage glucose. In this case study we focus on type 2
diabetes, which accounts for more than 90% of all cases.

The first goal, glycemic control, is typically achieved
quickly following diagnosis of diabetes using oral medications
and/or insulin. Management of cardiovascular risk, the focus
of this case study, is a longer term challenge, with a complex
trade-off between the harms of medication and the risk of
future CHD and stroke events. Patients with diabetes are at
much higher risk of stroke and CHD events than the general
population. Well-known risk factors include Total Cholesterol
(TC), High Density Lipids (HDL – often referred to as “good
cholesterol”), and Systolic Blood Pressure (SBP). Like blood
glucose, the risk factors of TC, HDL, and SBP are also con-
trollable with medical treatment. Medications, such as statins
and fibrates, can reduce TC and increase HDL. Similarly, there
are a number of medications that can be used to reduce blood
pressure including ACE inhibitors, ARBs, beta blockers, thia-
zide, and calcium channel blockers. All of these medications
have side effects that must be weighed against the long-term
benefits of lower risk of CHD and stroke. An added challenge
to deciding when and in what sequence to initiate medication
is due to the conflicting risk estimates provided by two well
known clinical studies: the FHS (Wolf et al., 1991; Wilson
et al., 1998) and the ACC/AHA assessment of cardiovascular
risk (Goff et al., 2014).

7.1. MMDP formulation

The MDP formulation of Mason et al. (2014) was adapted
to create an MMDP based on the FHS risk model (Wolf
et al., 1991; Wilson et al., 1998) and the ACC/AHA risk
model (Goff et al., 2014). These are the most well-known
risk models used by physicians in practice. The state space
of the MMDP is a finite set of health states defined by SBP,

Table 2. The effect of the concentration parameter, b, on the performance of the WSU, MVP, and MIP solution methods on random MMDP test instances for
the basecase instance size.

Concentration
Solution Time (CPU Seconds) Optimality Gap (%) VWV (%) VWSU (%)

Parameter
MIP WSU MVP WSU MVP

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Min. Max.

1 5.73 18.54 < 0.01 < 0.01 < 0.01 < 0.01 0.42 2.81 1.03 4.11 1.67 7.70 0.78 �1.49 5.26
10 5.19 12.48 < 0.01 < 0.01 < 0.01 < 0.01 0.55 2.12 1.32 10.92 1.63 10.19 0.50 �4.38 9.35
100 4.80 9.81 < 0.01 < 0.01 < 0.01 < 0.01 0.32 2.23 1.42 8.23 1.23 14.34 0.65 �0.64 9.81

Notes. Each algorithm was run for 30 instances for each value of the concentration parameter. The Value of the Weighted Value problem (VWV) and the value of
using the WSU heuristic (VWSU) are also reported for each value of the concentration parameter.
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TC, HDL, and current medications. A discrete set of actions
represents the initiation of the two cholesterol medications
and four classes of blood pressure medications. The object-
ive is to optimize the timing and sequencing of medication
initiation to maximize Quality-Adjusted Life Years (QALYs).
QALYs are a common measure used to assess health inter-
ventions that account for both the length of a patient’s life
as well as the loss of quality of life due to the burden of
medical interventions. For this case study, we will assume
that the rewards are the same in each of the models of the
MMDP and that only the transition probabilities vary across
models. Figure 2 provides a simplified example to illustrate
the problem. In the diagram, solid lines illustrate the actions
of initiating one or both of the most common medications
(statins (ST), ACE inhibitors (AI)), and dashed lines repre-
sent the occurrence of an adverse event (stroke or CHD
event), or death from other causes. In each medication state,
including the no medication state (;), patients probabilistic-
ally move between health risk states, represented by L (low),
M (medium), H (high), and V (very high). For patients on
one or both medications, the resulting improvements in risk
factors reduce the probability of complications. Treatment
actions are taken at a discrete set of decision epochs indexed
by t 2 T ¼ f0, 1, :::,Tg that correspond to ages 54 through
74 at 1-year intervals that represent annual preventive care
visits with a primary care doctor. These ages represent the
median age of diagnosis of diabetes among patients in the
calibrating dataset until the age for which the risk estimators
provide predictions of cardiovascular risk. It is assumed that
once a patient starts a medication, the patient will remain
on this medication for the rest of his or her life, which is
consistent with clinical recommendations (Chobanian et al.,
2003; Vijan and Hayward, 2004). States can be separated
into living states and absorbing states. Each living state is
defined by the factors that influence a patient’s cardiovascu-
lar risk: the patient’s TC, HDL, and SBP levels, and medica-
tion state. We denote the set of the TC states by

LTC ¼ fL,M,H,Vg, with similar definitions for HDL,
LHDL ¼ fL,M,H,Vg, and SBP, LSBP ¼ fL,M,H,Vg: The
thresholds for these ranges are based on established clinic-
ally-relevant cut points for treatment (Expert Panel on
Detection, Evaluation, and Treatment of High Blood
Cholesterol in Adults, 2001). The complete set of health
states is indexed by ‘ 2 L ¼ LTC � LHDL � LSBP:

The set of medication states is B ¼ fs ¼ ðs1, s2, :::, snÞ :
si 2 f0, 1g, 8i ¼ 1, 2, :::, 6g corresponding to all combina-
tions of the six medications mentioned above. If si ¼ 0, the
patient is not on medication i, and if si ¼ 1, the patient is
on medication i. The treatment effects for medication i are
denoted by xTCðiÞ, for the proportional reduction in TC,
xHDLðiÞ, for the proportional change in HDL, and xSBPðiÞ,
for the proportional change in SBP, as reported in Mason
et al. (2014). The living states in the model are indexed by
ð‘, sÞ 2 L � B: The absorbing states indexed by d 2 D ¼
fDS,DCHD,DOg represent having a stroke, DS, having a
CHD event, DCHD, or dying, DO: The action space depends
on the history of medications that have been initiated in
prior epochs. For each medication, at each epoch, medica-
tion i can be initiated (I) or initiation can be delayed (W):

Að‘,miÞ ¼
fIi,Wig if si ¼ 0,
fWig if si ¼ 1,

�

and Að‘, sÞ ¼ fAð‘, s1Þ � Að‘, s2Þ � � � � � Að‘, snÞg: Action a 2
Að‘, sÞ denotes the action in state ð‘, sÞ: If a patient is in liv-
ing state ð‘, sÞ and takes action a, the new medication state
is denoted by s0, where s0i is set to one for any medications
i that are newly initiated by action a; s0i ¼ si for all medica-
tions i which are not newly initiated. Once medication i is
initiated, the associated risk factor is modified by the medi-
cation effects denoted by xTCðiÞ,xHDLðiÞ, and xSBPðiÞ,
resulting in a reduction in the probability of a stroke or
CHD event. Two types of transition probabilities are incor-
porated into the model: probabilities of transition among
health states and the probability of events (fatal and

Figure 2. An illustration of the state and action spaces of the MDP as illustrated in Mason et al. (2014). In the corresponding MMDP, when medications are initiated
(solid lines denote actions), the risk factors are improved and the probability of an adverse event (denoted by the dashed lines) is reduced. The probabilities of
adverse events may differ in the different models depending on the risk calculator.
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nonfatal). At epoch t, �pst ðdj‘Þ denotes the probability of
transition from state ð‘, sÞ 2 L � B to an absorbing state
d 2 D: Given that the patient is in health state ‘ 2 L, the
probability of being in health state ‘0 in the next epoch is
denoted by qtð‘0j‘Þ: The health state transition probabilities,
qtð‘0j‘Þ, were computed from empirical data for the natural
progression of blood pressure and cholesterol adjusted for
the absence of medication (Denton et al., 2009). We define
pst ðjj‘Þ to be the probability of a patient being in state j 2
L [ D at epoch tþ 1, given the patient is in living state
ð‘, sÞ at epoch t. The transition probabilities can be written
as:

pst ðjjiÞ ¼
1�

P
d2D �p

s
t ðdjiÞ


 �
qtðjjiÞ if i, j 2 L,

�pst ðjjiÞ if i 2 L, j 2 D,
1 if i ¼ j 2 D,
0 otherwise:

8>><
>>:

The two models of the MMDP represent the different car-
diovascular risk calculators used to estimate the transition
probabilities to the absorbing states: �pst ðdjiÞ for i 2 L, d 2 D:
We will refer to the model using the ACC/AHA study as
model A and the model using FHS as model F. We weight
these models by kA 2 ½0, 1� and kF :¼ 1� kA respectively.
We estimate all other cause mortality from the Centers for
Disease Control and Prevention life tables (Arias and Xu,
2011). The reward rtð‘, sÞ for a patient in health state ‘ at
epoch t is:

rtð‘, sÞ ¼ Qð‘, sÞ,
where Qð‘, sÞ ¼ 1� dMEDðsÞ is the reward for one QALY.
QALYs are elicited through patient surveys, and are com-
monly used for health policy studies (Gold et al., 2002). The
disutility factor, dMEDðsÞ, represents the estimated decrease
in quality of life due to the side effects associated with the

medications in s: We use the disutility estimates provided in
Mason et al. (2014).

7.2. Results

Using the MMDP described above, we evaluated the per-
formance of the solutions generated via WSU in terms of
computation time and the objective function of QALYs until
first event. The MMDP had 4099 states, 64 actions, 20 deci-
sion epochs, and two models.

Table 3 shows the computation time required to run
WSU with kF ¼ kA ¼ 0:5, as well as the time required to
solve the FHS model and the ACC/AHA model using stand-
ard dynamic programming, for the female and male prob-
lem parameters. Although WSU requires more computation
time than standard dynamic programming for each of the
individual models, WSU does not take more computation
time than the total time for solving both of the nom-
inal models.

Figure 3 shows the performance of the policies generated
using WSU when evaluated in the ACC/AHA and FHS
models, as well as the weighted value of these two models
for the corresponding choice of the weight on the FHS
model, kF. The dashed line in these figures represents the
upper bound from Proposition 4. When kF ¼ 100%, WSU
finds the optimal policy for the FHS model, which is why
the maximum of the FHS value is achieved at kF ¼ 100%.
Of the WSU policies, the worst value in the ACC/AHA
model is achieved at this point because the algorithm
ignores the performance in the ACC/AHA model.
Analogously, when kF ¼ 0%, WSU finds the optimal policy
for the ACC/AHA model, which is why the performance in
the ACC/AHA model achieves its maximum and the per-
formance in the FHS model is at its lowest value at this
point. For values of kF 2 ð0, 1Þ, WSU generates policies that
trade-off the performance between these two models. We
found that WSU generated policies that slightly outper-
formed the policy generated by solving the MVP. As sup-
ported by Proposition 1, WSU has the desirable property
that the performance in model m is non-decreasing in km.
For women, using the FHS model’s optimal policy leads to a

Figure 3. The performance of the policies generated using the WSU approximation algorithm for the MMDP for treatment of men (Figure 3(a)) and women (Figure
3(b)). For each choice of the weight on the FHS model in WSU, the graph shows the performance of these policies with respect to three different metrics: the per-
formance in the ACC/AHA model (light gray), the performance in the FHS model (dark gray), and the weighted value (black). The dotted line represents the upper
bound from Proposition 4.

Table 3. Time to approximate a solution to the weighted problem using the
WSU algorithm and to solve each of the nominal models using standard
dynamic programming, in CPU seconds.

Solution Method Female Male

WSU with kF ¼ kA ¼ 0:5 10.98 11.08
Standard DP, FHS Model 8.70 8.77
Standard DP, ACC/AHA Model 8.98 9.00
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severe degradation in performance with respect to the ACC/
AHA model. In contrast, WSU is able to generate policies
that do not sacrifice too much performance in the ACC/
AHA model in order to improve performance in the FHS
model. The results for women clearly illustrate why taking a
max-min approach instead of the MMDP approach can be
problematic in some cases. To see this, note that the FHS
model’s optimal policy is a solution to the max-min problem
because vFðp�FÞ < vAðp�FÞ and thus no policy will be able to
achieve a better value than p�F in the FHS model. However,
Figure 3(b) shows that this policy leads to a significant deg-
radation in performance in the ACC/AHA model relative to
that model’s optimal policy p�A: This demonstrates why tak-
ing a max-min approach, which is common in the robust
MDP literature as pointed out in Appendix A.1, can have
the unintended consequence of ignoring the performance of
a policy in all but one model in some cases. By taking the
weighted value approach with nontrivial weights on the
models, the DM is forced to consider the performance in all
models. By generating policies using WSU and varying kF 2
ð0, 1Þ, the DM can strike a balance between the performance
in the ACC/AHA model and the FHS model.

Table 4 illustrates that the WSU approximation algorithm
generates a policy that will perform well in both the ACC/
AHA model and in the FHS model. The table reports the
QALYs gained per 1000 persons relative to a benchmark
policy of never initiating treatment; these values are reported
for three policies: (i) the ACC/AHA model’s optimal policy;
(ii) the FHS model’s optimal policy; and (iii) the WSU pol-
icy. Although using a model’s optimal policy results in the
highest possible QALY gain in that model, that model’s
optimal policy can sacrifice performance when evaluated in
the other model. This is illustrated in the table in terms of
regret: the difference, for a specific model, between the
QALYs gained by that model’s optimal policy and the

QALYs gained by the specified policy. The table shows that
in the ACC/AHA model, the FHS model’s optimal policy
achieves 134.4 QALYs per 1000 men less than the ACC/
AHA model’s optimal policy, whereas while the WSU policy
is able to achieve only 16.6 less QALYs per 1000 men.
Similarly, in the FHS model, the ACC/AHA model’s optimal
policy sacrifices 91.6 fewer QALYs per 1000 men relative to
the optimal policy for the ACC/AHA model whereas the
WSU policy only sacrifices 39.1 QALYs per 1000 men rela-
tive to the optimal policy for this model. Assuming an unin-
formed prior, the WSU approximation algorithm with equal
weights on the models provides a weighted regret that is
17.9 and 2.9 QALYs less than the ACC/AHA model’s opti-
mal policy for men and women, respectively, and WSU
achieves a weighted regret that was 39.3 and 48.4 QALYs
less than the FHS models’ optimal policy for men and
women, respectively. For women in particular, we find that
using ignoring ambiguity in the risk calculations could
potentially lead to very poor outcomes.

The findings suggest that the FHS model’s optimal policy
is worse than the no treatment policy in the ACC/AHA
model results. This is likely because the FHS model’s opti-
mal policy is much more aggressive in terms of starting
medications. We discuss the policy associated with the solu-
tion generated using WSU when the weights are treated as
an uninformed prior on the models in Appendix D.3. As
discussed there, it seems that the FHS model’s optimal pol-
icy is starting many women on medication which leads
them to incur the disutility associated with these medica-
tions, but that these medications do not provide much bene-
fit in terms of risk reduction in the ACC/AHA model.
Although the ACC/AHA model’s optimal policy outper-
forms the no treatment policy in the Framingham model,
we still see a large amount of regret in terms of QALYs
gained per 1000 women in the FHS model. For both of

(b) Female

Metric (per 1000 women) Evaluation ACC/AHA Optimal Policy FHS Optimal Policy WSU Policy

QALYS Gained ACC/AHA 205.2 –155.3 147.9
Over No Treatment FHS 1401.1 1670.4 1464.1

Weighted 803.1 757.5 806.0

Regret ACC/AHA 0 360.5 57.3
FHS 269.3 0 206.3
Weighted 134.7 180.2 131.8

Notes. The three policies are: (i) the optimal policy for the ACC/AHA model; (ii) the optimal policy for the FHS model; and (iii)
the policy generated via the WSU approximation algorithm, which considers both the ACC/AHA and FHS models simultan-
eously. These policies are evaluated in terms of the QALYs gained over a policy which never initiates medication in the ACC/
AHA model and the FHS model, as well as the weighted QALYs gained over no treatment in these two models. Regret is
determined by taking the difference between the QALYs obtained by the policy for an individual model and the QALYs
obtained by the given policy. The “Weighted” metrics report the value obtained by evaluating the given policy in each model
separately, and then taking the weighted average.

Table 4. The performance of three policies in terms of QALYs gained over no treatment and regret.

(a) Male

Metric (per 1000 men) Evaluation ACC/AHA Optimal Policy FHS Optimal Policy WSU Policy

QALYs Gained ACC/AHA 695.9 561.5 679.3
Over No Treatment FHS 1788.9 1880.5 1841.4

Weighted 1242.4 1211.0 1260.4

Regret ACC/AHA 0 134.4 16.6
FHS 91.6 0 39.1
Weighted 45.8 67.2 27.9
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these models, the WSU policy finds a policy that achieves a
lower regret than the “other” model’s optimal policy.
Weighting the regret from the two models equally, we see
that the WSU policy is able to hedge against the ambiguity
in risk for women and outperforms the two policies which
ignore ambiguity. In addition, the WSU algorithm generates
a small gain over the policies found via the MVP approach.
WSU led to a gain of 0.9 QALYs per 1000 women and a
gain of 0.1 QALYs per 1000 men over the MVP policy.

It is interesting to note that the regret achieved by the
WSU is much smaller for men than for women. This may
be due to the disparity in the effects of ambiguity on deci-
sion making for women and men. EVPI is one way to quan-
tify the expected value of resolving ambiguity and gives a
DM a sense of how valuable it would be to obtain better
information. As WSU 	W�, the following is an upper
bound on EVPI: EVPI ¼WS�W� 	WS�WSU: For this
case study, the upper bound on the EVPI suggests that as
many as 28 QALYs per 1000 men and 131.8 QALYs per
1000 women could be saved if there were no ambiguity in
the cardiovascular risk of the patient. Estimates such as this
provide insight into the value of future studies that could
reduce the ambiguity.

Although our case study was motivated by differences
between the FHS and ACC/AHA risk models, our approach
is easily generalized to more than two models. In Appendix
E, we investigate the sensitivity of the results to the number
of models in the MMDP by considering three different nat-
ural history scenarios in combination with the two cardio-
vascular risk models. The policies were quite different for
models with different cardiovascular risk calculators, but dif-
ferences in the natural history model did not play as large
of a role. In this expanded MMDP model, the WSU policy
performs better than each individual model in terms of
weighted performance.

8. Conclusions

In this article, we addressed the following research ques-
tions: (i) how can we improve stochastic dynamic program-
ming methods to account for parameter ambiguity in
MDPs? (ii) how much benefit is there to mitigating the
effects of ambiguity? To address the first question, we intro-
duced the MMDP, which is an MDP with multiple models
of the reward and transition probability parameters, and the
WVP whose solution provides a policy that maximizes the
weighted value across these models. We proved that the
solution of the WVP provides a policy that is no more com-
plicated than the policy corresponding to a single-model
MDP while having the robustness that comes from account-
ing for multiple models of the MDP parameters. Although
our complexity results establish that the WVP for an
MMDP is computationally intractable, our analysis shows
there is promising structure that can be exploited to create
exact methods and fast approximation algorithms for solving
the WVP.

To address the second research question, we established
connections between concepts in stochastic programming

and the WVP that quantify the impact of ambiguity on an
MDP. We showed that the WVP can be viewed as a two-
stage stochastic program in which the first-stage decisions
correspond to the policy and the second-stage decisions cor-
respond to the value-to-go in each model under the speci-
fied policy. This characterization provided insight into a
formulation of the WVP as an MIP corresponding to the
deterministic equivalent problem of the aforementioned
two-stage stochastic program. We provided experiments
comparing the results for the WVP considered in the main
body and the adaptive counterpart considered in the appen-
dix. We found the differences were small; however, our
comparisons were based on small model instances. Whether
or not there may be problems for which there are large dif-
ferences between the WVP and its adaptive counterpart for
large instances – which would be very difficult to solve effi-
ciently due to the complexity of POMDPs – may be an
opportunity for future research.

We evaluated the performance of our solution methods
using a large set of randomly-generated test instances and
also an MMDP of blood pressure and cholesterol manage-
ment for type 2 diabetes as a case study. The WSU approxi-
mation algorithm performed very well across the randomly-
generated test cases whereas solution of the MVP had some
instances with large optimality gaps indicating that simply
averaging multiple models should be done with caution.
These randomly-generated test instances also showed that
there was very little gain from adaptive optimization of poli-
cies over non-adaptive optimization for the problem instan-
ces considered.

In the case study, we solved the WVP for an MMDP
consisting of two models that were parameterized according
to two well-established but conflicting studies from the med-
ical literature which give rise to ambiguity in the cardiovas-
cular risk of a patient. The WSU policy addresses this
ambiguity by trading off performance between these two
models and is able to achieve a lower expected regret than
either of the policies that would be obtained by simply solv-
ing a model parameterized by one of the studies, as is typic-
ally done in practice currently. The case study also
highlights how the MMDP can be used to estimate the
benefit of mitigating parameter ambiguity arising from these
conflicting studies. The EVPI in this case study suggests that
gaining more information about cardiovascular risk could
lead to a substantial increase in QALYs, with potentially
more benefit to be gained from learning more about wom-
en’s cardiovascular risk. For the most part, the policies gen-
erated via the WSU approximation algorithm found a
balance between the medication usage in each of the models.
However, for men, the WSU approximation algorithm sug-
gested that more aggressive use of thiazides and ACE/ARBs
would allow for a better balance in performance in both
models. For women, the WSU approximation algorithm
generated a policy that is more aggressive in cholesterol con-
trol than the FHS model’s optimal policy and more aggres-
sive in blood pressure control than the ACC/AHA model’s
optimal policy.
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Using our case study, we showed that the WSU generated
small gains over the MVP. Although the difference is small
for this particular case study, our numerical results in
Section 6 showed the differences can be large in some cases.
Although our results indicate WSU may be a safer choice, it
is advisable to evaluate the WSU and MVP solutions, both
of which have favorable computation time for large scale
problems and significant benefits in terms of regret com-
pared with selecting one of the MDP models arbitrarily.
Future research could help identify conditions under which
the MVP would generate a suitable solution versus condi-
tions under which the MMDP approach could lead to exten-
sive gains.

There are open opportunities for future work that builds
off of the MMDP formulation. Future work could study the
performance of the MMDP formulation for addressing stat-
istical uncertainty compared with other robust formulations
that have attempted to mitigate the effects of this kind of
uncertainty. Another opportunity is to apply this approach
to other diseases, such as diabetes, breast cancer, and pros-
tate cancer, for which multiple models have been developed.
Other future work might extend this concept to partially-
observable MDPs and infinite-horizon MDPs, which are
both commonly used for medical decision making.
Furthermore, the bounds developed for the WSU were in
the context of a two-model MMDP, but it could be valuable
to develop bounds for WSU for jMj > 2: Finally, the
MMDP introduced in this article was limited to a finite
number of models, however, future work may consider the
possibility of a countably infinite number of models.

In summary, the MMDP is a new approach for incorpo-
rating parameter ambiguity in MDPs. This approach allows
DMs to explicitly trade-off conflicting models of problem
parameters to generate a policy that performs well with
respect to each model while keeping the same level of com-
plexity as each model’s optimal policy. The MMDP may be
a valuable approach in many application areas of MDPs,
such as medicine, where multiple sources are available for
parameterizing the model.
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